
Vaunix Technology Corporation
Lab Brick® Family of Signal Generators

API User
Manual

Revision A

Vaunix Technology Corporation

2

Lab Brick Signal Generator

NOTICE
Vaunix has prepared this manual for use by Vaunix Company personnel and
customers as a guide for the customized programming of Lab Brick products.
The drawings, specifications, and information contained herein are the property
of Vaunix Technology Corporation, and any unauthorized use or disclosure of
these drawings, specifications, and information is prohibited; they shall not be
reproduced, copied, or used in whole or in part as the basis for manufacture or
sale of the equipment or software programs without the prior written consent of
Vaunix Technology Corporation.

3

Lab Brick Signal GeneratorVaunix Technology Corporation

Table of Contents
1.0 OVERVIEW ... 4
2.0 USING THE SDK... 5
3.0 PROGRAMMING ... 6

3.1 Overall Strategy and API Achitecture .. 6
3.2 Status Codes .. 8
3.3 Functions – Selecting the Device ... 8
3.4 Functions – Setting parameters on the Signal Generator 10
3.5 Functions – Reading parameters from the Signal Generator......................... 12

4.0 PROGRAMMING SUPPORT .. 14

Vaunix Technology Corporation

4

Lab Brick Signal Generator

1.0 OVERVIEW

The LabBrick Signal Generator Win32 SDK supports developers who want to control LabBrick
Signal Generator from Windows programs, or who want to control the synthesizers from LabVIEW1

or other National Instruments programming environments. The SDK includes a dll which provides a
Win32 API to find, initialize, and control the synthesizers, along with header files and an example
Win32 C program which demonstrates the use of the API.

1 LabView is a trademark of National Instruments

5

Lab Brick Signal GeneratorVaunix Technology Corporation

2.0 USING THE SDK

The SDK consists of a dll, named VNfsynth.dll, along with this documentation, a C style header file,
a library file for linking to the dll, and a VC 6 example program. Unzip the SDK into a convenient
place on your hard disk, and then copy the dll and library file into the directory of the executable
program you are creating. Add the header file (VNX_fsynth.h) to your project, and include it with the
other header files in your program. Make sure that the linker directives include the path of the library
file.

Vaunix Technology Corporation

6

Lab Brick Signal Generator

3.0 PROGRAMMING

3.1 Overall Strategy and API Achitecture

The API provides functions for identifying how many and what type of LabBrick signal generators
are connected to the system, initializing signal generators so that you can send them commands and
read their state, functions to control the operation of the signal generators, and finally a function to
close the software connection to the signal generator when you no longer need to communicate with
it.

The API can be operated in a test mode, where the functions will simulate normal operation but will
not actually communicate with the hardware devices. This feature is provided as a convenience to
software developers who may not have a LabBrick signal generator with them, but still want to be
able to work on an applications program that uses the LabBrick. Of course it is important to make
sure that the API is in its normal mode in order to access the actual hardware!

Be sure to call fnLSG_SetTestMode(FALSE), unless of course you want the API to operate in its test
mode. In test mode there will be 2 devices, an LSG-402 and an LSG-602.
The first step is to identify the synthesizers connected to the system. Call the function
fnLSG_GetNumDevices() to get the number of synthesizers attached to the system. Note that USB
devices can be attached and detached by users at any time. If you are writing a program which needs
to handle the situation where devices are attached or detached while the program is operating, you
should periodically call fnLSG_GetNumDevices() to see if any new devices have been attached.2

Allocate an array big enough to hold the device ids for the number of devices present. While you
should use the DEVID type declared in VNX_fsynth.h it’s just an array of units at this point. You
may want to allocate an array large enough to hold MAXDEVICES device ids, so that you do not
have to handle the case where the number of attached devices increases.

Call fnLSG_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device ids for
each connected frequency synthesizer. The function returns an integer, which is the number of
devices present on the machine.

2 Usually it is a good idea to call fnLSG_GetNumDevices() at around 1 second intervals. While a
short interval reduces the chances, it is still possible that the user will remove one device and replace
it with another however, so to completely handle all the cases which can result from users hot
plugging devices your application needs to check to see not only if the number of devices is
different, but if the same number of devices are present, but they are different devices.

7

Lab Brick Signal GeneratorVaunix Technology Corporation

The next step is to call fnLSG_GetModelName(DEVID deviceID, char *ModelName) with a null
ModelName pointer to get the length of the model name, or just use a buffer that can hold
MAX_MODELNAME chars. You can use the model name to identify the type of synthesizer. Call
fnLSG_GetSerialNumber(DEVID deviceID) to get the serial number of the synthesizer. Based on
that information, your program can determine which device to open.

Once you have identified the synthesizer you want to send commands to, call
fnLSG_InitDevice(DEVID deviceID) to actually open the device and get its various parameters like
frequency setting, frequency step parameters, etc. After the fnLSG_InitDevice function has
completed you can use any of the get functions to read the settings of the synthesizer.

To change one of the settings of the synthesizer, use the corresponding set function. For example, to
set the synthesizer frequency, call fnLSG_SetFrequency(DEVID deviceID, int frequency). The first
argument is the device id of the synthesizer, the second is the desired output frequency. Frequency is
specified in 100 KHz increments, where:

frequency = Frequency (Hz) / 100,000

For example, to specify an output frequency of 1.5 GHz, frequency = 15,000.

To set the output power level, call fnLSG_SetPowerLevel(DEVID deviceID, int powerlevel) with the
output power level you want. The powerlevel is encoded as the number of .25dB increments, with a
resolution of .5dB. To set a power level of +5 dBm, for example, powerlevel would be 20. To set a
power level of -20 dBm, powerlevel would be -80.

Note that the LabBrick signal generators have a maximum and minimum settable power level. You
can query the limits with calls to fnLSG_GetMaxPwr(DEVID deviceID) and
fnLSG_GetMinPwr(DEVID deviceID). Both functions use the same encoding of the powerlevel as
the SetPowerLevel function.

When you are done with the device, call fnLSG_CloseDevice(DEVID deviceID).

Vaunix Technology Corporation

8

Lab Brick Signal Generator

3.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get functions
normally return an integer value, but in the event of an error they will return an error code. The error
codes can be distinguished from normal data by their numeric value, since all error codes have their
high bit set, and they are outside of the range of normal data.

A separate function, fnLSG_GetDeviceStatus(DEVID deviceID) provides access to a set of status
bits describing the operating state of the synthesizer. This function can be used to check if a device is
currently connected or open.

The values of the status codes are defined in the VNX_fsynth.h header file.

3.3 Functions – Selecting the Device

VNX_FSYNSTH_API void fnLSG_SetTestMode(bool testmode)
Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not communicate
with the actual hardware, but simulates the basic operation of the dll functions. It does not
simulate the operation of attenuation ramps generated by the actual hardware, but it does simulate
the behavior of the functions used to set the parameters for the ramps.

VNX_FSYNSTH_API int fnLSG_GetNumDevices()
This function returns a count of the number of connected attenuators.

VNX_FSYNSTH_API int fnLSG_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected synthesizers.
Note that the array must be large enough to hold a device id for the number of devices returned by
fnLSG_GetNumDevices. The function also returns the number of active devices, which can,
under some circumstances, be less than the number of devices returned in the previous call to
fnLSG_GetNumDevices.

The device ids are used to identify each device, and are used in the rest of the functions to select
the device. Note that while the device ids may be small integers, and may, in some circumstances
appear to be numerically related to the devices present, they should only be used as opaque
handles.

9

Lab Brick Signal GeneratorVaunix Technology Corporation

VNX_FSYNSTH_API int fnLSG_GetModelName(DEVID deviceID, char *ModelName)

This function is used to get the model name of the synthesizer. If the function is called with a null
pointer, it returns just the length of the model name string. If the function is called with a non-null
string pointer it copies the model name into the string and returns the length of the string. The
string length will never be greater than the constant MAX_MODELNAME which is defined in
VNX_fsynth.h. This function can be used regardless of whether or not the synthesizer has been
initialized with the fnLSG_InitDevice function.

VNX_FSYNSTH_API int fnLSG_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the synthesizer. It can be called regardless of
whether or not the synthesizer has been initialized with the fnLSG_InitDevice function. If your
system has multiple synthesizers, your software should use each device’s serial number to keep
track of each specific device. Do not rely upon the order in which the devices appear in the table
of active devices. On a typical system the individual synthesizers will typically be found in the
same order, but there is no guarantee that this will occur.

VNX_FSYNSTH_API int fnLSG_GetDeviceStatus(DEVID deviceID)

This function can be used to obtain information about the status of a device, even before the
device is initialized. (Note that information on the stepped sweep activity of the device is not
guaranteed to be available before the device is initialized.)

VNX_FSYNSTH_API int fnLSG_InitDevice(DEVID deviceID)

This function is used to open the device interface to the synthesizer and initialize the dll’s copy of
the device’s settings. If the fnLSG_InitDevice function succeeds, then you can use the various
fnLSG_Get* functions to read the synthesizer’s settings. This function will fail, and return an
error code if the synthesizer has already been opened by another program.

VNX_FSYNSTH_API int fnLSG_CloseDevice(DEVID deviceID)

This function closes the device interface to the synthesizer. It should be called when your program
is done using the synthesizer.

Vaunix Technology Corporation

10

Lab Brick Signal Generator

3.4 Functions – Setting parameters on the Signal Generator

VNX_FSYNSTH_API LVSTATUS fnLSG_SetFrequency(DEVID deviceID, int frequency)

This function is used to set the output frequency of the synthesizer. Frequency is encoded as an
integer number of 100 kHz steps:

frequency = Frequency (Hz) / 100,000

For example, to specify an output frequency of 250 MHz, frequency = 2500. The value of
frequency must be within the range of the attached synthesizer or an error will be returned.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetPowerLevel(DEVID deviceID, int powerlevel);

This function is used to set the output power level of the programmable synthesizer. The power
level is specified in .25dB units. The encoding is:

powerlevel = desired output power in dBm / .25dB

For example, if you want -7.5 dBm output power then you should set powerlevel to -30.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetStartFrequency(DEVID deviceID, int startfrequency)

This function sets the frequency at the beginning of a stepped frequency sweep. The encoding of
startfrequency is the same as the fnLSG_SetFrequency function. Note that the start frequency
should be less than the end frequency when you want the frequency to step upwards during the
sweep. For a sweep where the frequency decreases, then the start frequency should be larger than
the end frequency.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetEndFrequency(DEVID deviceID, int endfrequency)

This function sets the frequency at the end of a stepped frequency sweep. The encoding of
endfrequency is the same as the fnLSG_SetFrequency function.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetFrequencyStep(DEVID deviceID, int frequencystep)

This function sets the size of the frequency step that will be used to generate the output frequency
sweep. The encoding of frequencystep is the same as for frequency in the fnLSG_SetFrequency
function. The smallest step size is 1 or 100 kHz.

11

Lab Brick Signal GeneratorVaunix Technology Corporation

VNX_FSYNSTH_API LVSTATUS fnLSG_SetDwellTime(DEVID deviceID, int dwelltime)

This function sets the length of time that the synthesizer will dwell on each frequency step while it
is generating the frequency sweep. The dwelltime variable is encoded as the number of
milliseconds to dwell at each frequency. The minimum dwell time is 10 milliseconds.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetRFOn(DEVID deviceID, bool on)

This function turns the RF stages of the synthesizer on (on = TRUE) or off (on = FALSE).

VNX_FSYNSTH_API int fnLSG_SetUseInternalRef(DEVID deviceID, bool internal);

This function configures the synthesizer to use the internal reference if internal = 1. If internal = 0,
then the synthesizer is configured to use an external frequency reference.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetSweepDirection(DEVID deviceID, bool up)

This function is used to set the direction of the stepped frequency sweep. To create a sweep with
increasing frequency, set up = TRUE. Note that the sweep start frequency value must be less than
the sweep end frequency value for a sweep with increasing frequency. For a sweep that decreases
in frequency, the sweep start value must be greater than the sweep end value.

VNX_FSYNSTH_API LVSTATUS fnLSG_SetSweepMode(DEVID deviceID, bool mode)

This function is used to select either a single frequency sweep, or a repeating series of sweeps. If
mode = TRUE then the sweep will be repeated, if mode = FALSE the sweep will only happen
once.

VNX_FSYNSTH_API LVSTATUS fnLSG_StartSweep(DEVID deviceID, bool go)

This function is used to start and stop the frequency sweeps. If go = TRUE the synthesizer will
begin sweeping, FALSE stops the sweep. You must set the sweep parameters before calling this
function to start the sweep.

VNX_FSYNSTH_API LVSTATUS fnLSG_SaveSettings(DEVID deviceID)

The LabBrick synthesizers can save their settings, and then resume operating with the saved
settings when they are powered up. Set the desired parameters, then use this function to save the
settings.

Vaunix Technology Corporation

12

Lab Brick Signal Generator

3.5 Functions – Reading parameters from the Signal Generator

VNX_FSYNSTH_API int fnLSG_GetFrequency(DEVID deviceID)

This function returns the current frequency setting of the selected device. When a sweep is active
this value will change dynamically to reflect the current setting of the device. The return value is
in 100 kHz units.

VNX_FSYNSTH_API int fnLSG_GetStartFrequency (DEVID deviceID)

This function returns the current frequency sweep starting value setting of the selected device.
The return value is in 100 kHz units.

VNX_FSYNSTH_API int fnLSG_GetEndFrequency (DEVID deviceID)

This function returns the current frequency sweep end setting of the selected device. The return
value is in 100 kHz units.

VNX_FSYNSTH_API int fnLSG_GetFrequencyStep (DEVID deviceID)

This function returns the current frequency sweep step size setting of the selected device. The
return value is in 100 kHz units, so for example a frequency step of 10 MHz would be represented
by a return value of 100.

VNX_FSYNSTH_API int fnLSG_GetDwellTime(DEVID deviceID)

This function returns the current dwell time for each step on the frequency ramp in milliseconds.
A one second dwell time, for example, would be returned as 1000.

VNX_FSYNSTH_API int fnLSG_GetRF_On(DEVID deviceID)

This function returns an integer value which is 1 when the synthesizer is “on”, or 0 when the
synthesizer has been set “off” by the fnLSG_SetRFOn function.

VNX_FSYNSTH_API int fnLSG_GetUseInternalRef(DEVID deviceID);

This function returns an integer value which is 1 when the synthesizer is configured to use its
internal frequency reference. It returns a value of 0 when the synthesizer is configured to use an
external frequency reference.

13

Lab Brick Signal GeneratorVaunix Technology Corporation

VNX_FSYNSTH_API int fnLSG_GetPowerLevel(DEVID deviceID);

This function returns the current power level setting as an integer number of .25 dB units. As an
example, an output power level of +3 dBm would result in the value 12 being returned, while an
output power level of +3.5 dBm would result in the value 14 being returned. The output power
resolution is .5 dB.

VNX_FSYNSTH_API int fnLSG_GetMaxPwr(DEVID deviceID);

This function returns the maximum output power level that the synthesizer can provide, encoded
in the same format as the fnLSG_GetPowerLevel function. For a synthesizer with +10 dBm
maximum output power level this function returns the integer value 40. This is a read only value.

VNX_FSYNSTH_API int fnLSG_GetMinPwr(DEVID deviceID);

This function returns the minimum output power level that the synthesizer can provide, encoded
in the same format as the fnLSG_GetPowerLevel function. Typically this value is a negative
number. For example, a device with -45 dBm minimum output power would return an integer
value of -180. This is a read only value.

VNX_FSYNSTH_API int fnLSG_GetMaxFreq (DEVID deviceID)

This function returns the maximum output frequency that the device can provide. The value is
represented in 100 kHz units.

VNX_FSYNSTH_API int fnLSG_GetMinFreq(DEVID deviceID)

This function returns the minimum output frequency that the device can provide. The value is
represented in 100 kHz units.

Vaunix Technology Corporation

14

Lab Brick Signal Generator

4.0 PROGRAMMING SUPPORT

Lab Brick programming support is available from Vaunix Technology Corporation. Please contact
our technical support group by email - LabBrickSupport@Vaunix.com.
Vaunix Technology also offers custom programming solutions. Send us your requirements to receive
a fixed rate project quotation.
Thank you for using our Lab Brick products.

	Table of Contents
	1.0 Overview
	2.0 Using the SDK
	3.0 Programming
	3.1 Overall Strategy and API Achitecture
	3.2 Status Codes
	3.3 Functions - Selecting the Device
	3.4 Functions - Setting parameters on the Signal Generator
	3.5 Functions - Reading parameters from the Signal Generator
	4.0 Programming Support

