VAUNIX TECHNOLOGY CORPORATION
e o o 0 O

vaunix

Lab Brick® LSW Series RF Switch

Windows USB API User Manual

Revision B

8/20/2025

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide for the
customized programming of Lab Brick products. The drawings, specifications, and information contained
herein are the property of Vaunix Technology Corporation, and any unauthorized use or disclosure of
these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used
in whole or in part as the basis for manufacture or sale of the equipment or software programs without the
prior written consent of Vaunix Technology Corporation.

Page |1

Table of Contents

0 T T 2
2. USING the SDKiiiiieiiiiiiniiiiiiieiiiieeniiiiienesiisiensssssimesssssstesssssssmesssssstsssssssssssssssssssnsssssssnns 2
T oY= = 1140 011 - 2
3.1 Overall Strategy and APl ArChit@CtUrecooviiiiiiiiee e 2
3.2 STAtUS COUBS. ...eeiiutiieiiiee ettt ettt et e e bt e e e bt e e e bt e e e bt e e sabeeesabeeesabeeeeabeeeenneesnnneenas 3
3.3 Functions — Setting up the Environment & HouSEKeEPINg......ccevevvviveeiiriiiie e 4
3.4 Functions — Selecting the DEVICEcccoe it e e e e 4
3.5 FUNCLIONS — SEttiNg Parameters ..o e e 6
3.6 Functions — Reading Parameterscooccciiiiiieiee et ee e e eerrrrer e e e e e e s neaen e e e e e e e e nneaees 9

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |2

1. Overview

The Lab Brick RF Switch Windows SDK supports developers who want to control Lab Brick RF
Switch from Windows programs, or who want to control the switch from LabVIEW or other
National Instruments programming environments. The SDK includes a dll which provides a
Win32/Win64 API to find, initialize, and control the switch, along with header files and an
example Win32/Win64 C program which demonstrates the use of the API.

2. Using the SDK

The SDK consists of both 32- and 64-bit dll files along with this documentation, a C style header
file, a library file for linking to the dll, and an example program. Unzip the SDK into a
convenient place on your hard disk, and then copy the dll and library file into the directory of the
executable program you are creating. Add the header file (vnx_Isw_api.h) to your project, and
include it with the other header files in your program. Make sure that the linker directives
include the path of the library file.

3. Programming

3.1 Overall Strategy and API Architecture

The API provides functions for identifying how many and what type of Lab Brick RF Switches
are connected to the system, initializing RF switches so that you can send them commands and
read their state, functions to control the operation of the RF switches, and finally a function to
close the software connection to the RF switch when you no longer need to communicate with it.

The API can be operated in test mode, where the functions will simulate normal operation but
will not actually communicate with the hardware devices. This feature is provided as a
convenience to software developers who may not have a Lab Brick RF switch with them but still
want to be able to work on an applications program that uses the Lab Brick. Of course, it is
important to make sure that the API is in its normal mode in order to access the actual hardware.

Be sure to call fnLSW_SetTestMode(FALSE), unless of course you want the API to operate in
its test mode. In test mode there will be 2 devices, an LSW-602PDT and an LSW-602P4T.

The first step in talking to the devices is to identify the RF Switches connected to the system.
Call the function fnLSW_GetNumDevices() to get the number of RF Switches attached to the
system. Note that USB devices can be attached and detached by users at any time. If you are
writing a program which needs to handle the situation where devices are attached or detached
while the program is operating, you should periodically call fnLSW_GetNumDevices() to see if
any new devices have been attached.

Allocate an array big enough to hold the device ids for the number of devices present. While you
should use the DEVID type declared in vanx_lsw_api.h, it’s just an array of unsigned ints at this
point. You may want to just allocate an array large enough to hold MAXDEVICES device ids, so
that you do not have to handle the case where the number of attached devices increases.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |3

Call tnLSW_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device
ids for each connected RF Switch. The function returns an integer, which is the number of
devices present on the machine.

The next step is to call inLSW_GetModelName(DEVID devicelD, char *ModelName) with a
null ModelName pointer to get the length of the model name, or just use a buffer that can hold
MAX MODELNAME chars. You can use the model name to identify the type of RF Switch.
Call tnLSW_ GetSerialNumber(DEVID devicelD) to get the serial number of the RF Switch.
Based on that information, your program can determine which device to open.

Once you have identified the RF Switch you want to send commands to, call

fnLSW _InitDevice(DEVID devicelD) to actually open the device and get its various parameters
like the number of switches it has, etc. After the fnLSW _InitDevice function has been completed
you can use any of the get functions to read the settings of the RF Switch.

To change one of the settings of the RF Switch, use the corresponding set function. For example,
to set a switch selection for non-expandable devices (LSW-502/602 series switches), call
fmLSW_SetSwitch (DEVID devicelD, int inputselect). The first argument is the device id of the
RF Switch; the second is the desired switch selection. The RF outputs are numbered sequentially
from 1 to 4 for the LSW-602P4T. For the LSW-602PDT the output 1 or 2 can be selected. For
expandable devices (LSW-802/203/403 series switches), call
ftnLSW_SetSwitchRFoutput(DEVID devicelD, int swindex, int swport). The first argument is the
device id of the RF Switch; the second is the switch index corresponding to the expansion bus
index of the desired switch (1 for single-unit devices); the third is the desired switch selection.

When you are done with the device, call fnLSW_CloseDevice(DEVID devicelD).

3.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get
functions normally return an integer value, but in the event of an error they will return an error
code. The error codes can be distinguished from normal data by their numeric value, since all
error codes have their high bit set, and they are outside of the range of normal data. Error codes
are defined in the vnx_Isw_api.h header file.

A separate function, fnLSW_GetDeviceStatus(DEVID devicelD) provides access to a set of
status bits describing the operating state of the RF Switch. This function can be used to check if a
device is currently connected or open.

The values of the status codes are defined in the vnx_lsw_api.h header file.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |4

3.3 Functions — Setting up the Environment & Housekeeping
VNX SWITCH_API void fnLSW_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not communicate
with the actual hardware but simulates the basic operation of the dll functions. It does not
simulate the dynamic operation of the actual hardware, but it does simulate the behavior of the
functions used to set and get the parameters in the device. Thus, API calls which start switch
patterns, or pulsed mode switching, will not cause the same changes in status variables as actual
hardware would.

VNX SWITCH_API int fnLSW_GetDLLVersion(void)

This function returns the version of the DLL, encoded as Major. Minor version in the lower 16
bits. Example: LSW_DLLVERSION 0x00000100 // Version 1.0

3.4 Functions — Selecting the Device
VNX SWITCH_API int fnLSW_GetNumDevices()

This function returns a count of the number of connected Lab Brick RF Switch devices.

VNX SWITCH_API int fnLSW_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected RF Switches.
Note that the array must be large enough to hold a device id for the number of devices returned
by fnLSW_GetNumDevices. The function also returns the number of active devices, which can,
under some circumstances, be less than the number of devices returned in the previous call to
ftnLSW_GetNumDevices.

The device ids are used to identify each device and are used in the rest of the functions to select
the device. Note that while the device ids may be small integers, and may, in some circumstances

appear to be numerically related to the devices present, they should only be used as opaque
handles.

VNX SWITCH_ API int fnLMS_ GetModelNameA(DEVID devicelD, char *ModelName)

This new function is used to get the model name of the switch as an ASCII string. If the function
is called with a null pointer, it returns just the length of the model name string. If the function is
called with a non-null string pointer it copies the model name into the string and returns the
length of the string. The string length will never be greater than the constant

MAX MODELNAME which is defined in vanx_Isw_api.h This function can be used regardless
of whether or not the switch has been initialized with the fnLSW _InitDevice function.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |5

VNX SWITCH_API int fnLMS GetModelNameW(DEVID devicelD, wchar t *ModelName)

This new function is used to get the model name of the switch as a Unicode string. If the function
is called with a null pointer, it returns just the length of the model name string. If the function is
called with a non-null string pointer it copies the model name into the string and returns the
length of the string. The string length will never be greater than the constant

MAX MODELNAME which is defined in vnx_Isw_api.h This function can be used regardless
of whether or not the switch has been initialized with the fnLSW _ InitDevice function.

VNX_SWITCH_API int fnLSW_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the RF Switch. It can be called regardless of
whether or not the RF Switch has been initialized with the fnLSW_InitDevice function. If your
system has multiple RF Switches, your software should use each device’s serial number to keep
track of each specific device. Do not rely upon the order in which the devices appear in the table

VNX SWITCH_API int fnLSW_InitDevice(DEVID devicelD)

This function is used to open the device interface to the switch and initialize the dll’s copy of the
device’s settings. If the fnLSW _InitDevice function succeeds, then you can use the various
ftnLSW_Get* functions to read the swicth settings. This function will fail, and return an error
code if the switch has already been opened by another program.

VNX SWITCH_API int fnLSW_CloseDevice(DEVID devicelD)

This function closes the device interface to the switch. It should be called when your program is
done using the switch.

VNX SWITCH_API int fnLDA_GetIPMode(DEVID devicelD)

This function is used to read the [P mode configuration of the device. Response data “0”
represents the “Static” mode, “1” represents the “DHCP” mode.

VNX SWITCH_API int fnLDA_GetIPAddress(DEVID devicelD, char *ip)

This function is used to read the IP address of the device.

VNX SWITCH_API int fnLDA_GetNetmask(DEVID devicelD, char *netmask)

This function is used to read the netmask of the device.

VNX SWITCH_APIint fnLDA_GetGateway (DEVID devicelD, char *gateway)

This function is used to read the gateway address of the device.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |6

3.5 Functions — Setting Parameters

VNX SWITCH API LVSTATUS fnLSW_SetSwitch (DEVID devicelD, int select)

This function is used to set the position of the switch for non-expandable devices (LSW-502/602
series switches). The first argument is the device id of the RF Switch, the second is the desired
switch selection. The RF outputs are numbered sequentially from 1 to numSwitches, where
numSwitches in the number of switches for the device returned by the fnLSW_GetNumSwitches
function.

VNX SWITCH_API LVSTATUS fnLSW_SetSwitchRFoutput(DEVID devicelD, int swindex,
int swport)

This function is used to set the Switch RF output state for the corresponding switch index for
expandable devices (LSW-802/203/403 series switches). The first argument is the device ID of
the RF switch, the second argument is the switch index corresponding to the expansion bus index
of the desired switch (1 for single-unit devices), and the third argument is the RF outputs. The
RF outputs are numbered sequentially from 1 to numSwitches, where numSwitches in the
number of switches for the device returned by the fnLSW_GetNumSwitches function.

VNX SWITCH_APILVSTATUS fnLSW_SetUseExternalControl (DEVID devicelD, bool
external);

This function is used to select internal or external control of the RF Switches. If external is
TRUE, then the Lab Brick RF Switch will be controlled by the external control signal input or
inputs.

VNX SWITCH_API LVSTATUS fnLSW_SetPattern(DEVID devicelD, int num_entries, int
sw_select[], int holdtime[])

This function sets the parameters for a switch pattern. A switch pattern consists of a set of pattern
elements, where each element defines a switch setting and a hold time. When the pattern is
activated the Lab Brick RF Switch steps through the pattern elements, waiting for the specified
hold time at each step. Hold times are specified in milliseconds, with the minimum being 1
millisecond. Currently, a pattern can have at most four entries, so the maximum value for
num_entries is 4. The array of switch selections, sw_select, has one element for each step in the
pattern, and that element holds a switch number from 1 to 4. To start or stop a pattern use the
fnLSW_ StartPattern function.

VNX SWITCH_APILVSTATUS fnLSW_StartPattern(DEVID devicelD, bool go)

Calling this function with go set to TRUE starts a switch pattern sequence at the beginning. To
stop the pattern, call this function with go set to FALSE.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |7

VNX SWITCH_API LVSTATUS fnLSW_SetPatternType(DEVID devicelD, bool continuous)

Calling this function with continuous set to TRUE before starting the pattern in order to have the
pattern repeat. If continuous is set to FALSE the pattern will only run once when it is started.

VNX SWITCH API LVSTATUS fnLSW_SetPatternEntry(DEVID devicelD, int sw_select, int
holdtime, int index, bool

last_entry)

This function can be used to set individual elements of the pattern. The argument SW select is
the switch setting, from 1 to 4. The argument holdtime is the length of time that the pattern will
hold each switch setting, expressed as an integer number of milliseconds. The argument index is
the zero-based position in the pattern, ranging from 0 to 3. The last entry argument should be set
to TRUE only for the final element in the pattern. For example, the following set of calls define a
pattern with three steps, where switch 1 is active for 1 second, switch 2 is active for .1 seconds,
and switch 3 is active for 10 seconds on device 5:

result = fnLSW_ SetPatternEntry(5, 1, 1000, 0, FALSE);
result = fnLSW_ SetPatternEntry(5, 2, 100, 1, FALSE);
result = fnLSW_ SetPatternEntry(5, 3, 10000, 2, TRUE);

VNX SWITCH_API LVSTATUS fnLSW_SetFastPulsedOutput(DEVID devicelD, float
pulseontime, float pulsereptime, bool on)

This function is the preferred way to control the internal pulse switching option. The pulseontime
parameter is the length of the pulse on time (switch 1 active) in seconds. The pulsereptime
parameter is the length of the repetition period in seconds. Both values can range from 100
nanoseconds (0.100e-6) to 1000 seconds (1.0e3). Set on = TRUE to start the pulsed output
modulation.

VNX SWITCH_API LVSTATUS fnLSW_SetPulseOnTime(DEVID devicelD, float
pulseontime)

This function is used to set the length of the RF pulse on time of the device’s internal pulse
switching. The pulseontime parameter is the length of the pulse on time (switch 1 active) in
seconds, with a 100 nanosecond minimum. This function is not recommended for general use.
Instead use the fnLSW _ SetFastPulsedOutput function.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |8

VNX SWITCH_API LVSTATUS fnLSW_SetPulseOffTime(DEVID devicelD, float
pulseofftime)

This function is used to set the length of the RF pulse off time of the device’s internal pulse
switching. The pulseofftime parameter is the length of the pulse off time (switch 2 active) in
seconds, with a 100 nanosecond minimum. The repetition period of the pulse modulation is equal
to pulseontime + pulseofftime. This function is not recommended for general use. Instead use the
fLSW_ SetFastPulsedOutput function.

VNX SWITCH_API LVSTATUS fnLSW_EnablelnternalPulseMod(DEVID devicelD, bool on)

This function is used to turn on and off the internal pulse switching. If on = TRUE the switch
will switch the RF output between switch 1 and switch 2 according to the values set for the pulse
on time and pulse off time using either the fnLSW_SetFastPulsedOutput function or the
functions to set pulse on and off time directly. To stop the internal pulse switching, set on =
FALSE. Always disable internal pulse switching before setting the pulse on and off time using
the fnLSW_ SetPulseOnTime and fnLSW_SetPulseOffTime functions.

VNX SWITCH_API LVSTATUS fnLSW_SaveSettings(DEVID devicelD)

The Lab Brick RF Switches can save their settings and then resume operating with the saved
settings when they are powered up. Set the desired parameters, then use this function to save the
settings.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |9

3.6 Functions — Reading Parameters
VNX SWITCH _API int fnLSW_GetNumSwitches (DEVID devicelD)

This function returns the base number of switches in the selected device. This is a read only
value.

VNX SWITCH_API int fnLSW_GetMaxSwitchDevices(DEVID devicelD)

This function returns the number of switch devices connected via expansion bus for the specified
device ID.

VNX SWITCH_API int fnLSW_GetActiveSwitch (DEVID devicelD)

This function returns the current switch connection of the selected device for non-expandable
devices (LSW-502/602 series switches). This value may differ from the current switch setting
when an external signal is used to control the switch, or when a switch pattern is running, or
during pulse mode operation. Note that for rapidly changing switch connections due to an
external signal, switch patterns or pulse mode operation the value returned by the
GetActiveSwitch function may not be a useful indicator of the actual switch connection since the
value returned represents the switch connection at the last status report which is asynchronous
with respect to the call to the GetActiveSwitch function.

VNX SWITCH_API int fnLSW_GetSwitchSetting (DEVID devicelD)

This function returns the current switch setting of the selected device for non-expandable devices
(LSW-502/602 series switches). In normal operation, this value is the same as the active switch,
except in the conditions described above.

VNX SWITCH _API int fnLSW_GetSwitchRFoutput(DEVID devicelD, int swindex)

This function is used to get the Switch RF output state for the corresponding switch index for
expandable devices (LSW-802/203/403 series switches). The first argument is the device ID of
the RF switch, the second argument is the switch index corresponding to the expansion bus index
of the desired switch (1 for single-unit devices).

VNX SWITCH_API int fnLSW_GetUseExternalControl (DEVID devicelD)

This function returns a non-zero value if the Lab Brick RF Switch has been set to use an external
signal to control the switches.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |10

VNX_SWITCH_API float fnLSW_GetPulseOnTime(DEVID devicelD)

This function returns the pulse on time, which is the length of time that RF input is connected to
output switch 1 when internal pulse modulation is operating, in seconds.

VNX_SWITCH_API float fnLSW_GetPulseOffTime(DEVID devicelD)

This function returns the pulse off time, which is the length of time that RF output is connected
to switch 2 when internal pulse modulation is operating, in seconds. The pulse repetition period
is equal to the pulse on time added to the pulse off time.

VNX SWITCH_API int fnLSW_GetPulseMode(DEVID devicelD)

This function returns an integer value which is 1 when the RF Switch’s internal pulse modulation
is active, or 0 when the internal pulse modulation is off.

VNX SWITCH_API int fnLSW_GetHasFastPulseMode(DEVID devicelD)

This function is included for compatibility with software developed for other Lab Brick products.
All Lab Brick RF Switches have fast pulse mode switching.

VNX SWITCH_ API int fnLSW_GetPatternLength (DEVID devicelD);

This function returns an integer value which is the number of elements in the switch pattern.
Currently, the maximum pattern length is 4. A pattern length of 0 indicates that no pattern has
been loaded into the Lab Brick RF Switch.

VNX SWITCH_API int fnLSW_GetPatternType (DEVID devicelD);

This function returns the current pattern type. A value of 1 indicates that a single shot pattern
was selected, and a value of 2 indicates that a repeating pattern was selected.

VNX SWITCH_API int fnLSW_GetPatternEntrySwitch (DEVID devicelD, int index);

This function returns the switch setting for a particular element in the array of switch settings
that define the switch pattern. The index ranges from 0 to 3. A value of zero indicates the end of
the pattern, while values of 1 to 4 indicate the switch setting for that step in the pattern.

VNX SWITCH _API int fnLSW_GetPatternEntryTime (DEVID devicelD);

This function returns the hold time for a particular element in the array of switch settings that
define the switch pattern. The index ranges from 0 to 3. The integer value returned is the length
of time, in 1 millisecond increments that the switch will remain at that step in the pattern

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

