VAUNIX TECHNOLOGY CORPORATION
e o o 0 O

vaunix

Lab Brick® LSW Series RF Switch

Linux USB API User Manual

Revision B

8/20/2025

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide for the
customized programming of Lab Brick products. The drawings, specifications, and information contained
herein are the property of Vaunix Technology Corporation, and any unauthorized use or disclosure of
these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used
in whole or in part as the basis for manufacture or sale of the equipment or software programs without the
prior written consent of Vaunix Technology Corporation.

Page |1

Table of Contents

0 T T 2
2.Setting UP the SDKiiiiieiiiiiiiiiiiiiniiiireniisreeesisiressssistsensssssnesssssstsesssssssesnsssssssnssssssanns 2
3. USING the SDKiiiiiiiiiiiiiniiiiiiieiiiieeeiiiieeneiisieassssiresssssssessssssssesssssstsssssssssesssssssssnsssssssnne 2
4. ProgrammMING..cccciieeiiieuiiranisimnsiiienseirsessiessssrasstmssssmsssstssssstesssstsssssrssssssssssssssssssssssssssssssssssas 3
4.1 Overall Strategy and APl ArChit@CtUIEcuviiiiiiiiiie e 3
4.2 STATUS COUS. ...ttt ettt e et e e bt e e s bt e e e bt e e e bt e e sabe e e e bt e e saneesnneas 4
4.3 Functions — Setting up the Environment & Housekeeping.......ccceeccvviiereeeieeicccciiieeee e 5
4.4 Functions — Selecting the DEVICEuuiiieiii ittt e e e e e earere e e e e e e e 5
4.5 FUNCLIONS — SETLING Parametars . ..uuuuiiiiiiiiiiiiieiiiiiiiiiirerieeeeerrerererereearerererere———.——————— 7
4.6 Functions — Reading ParameEters ...ttt e e e e e e rere e e e e e e e 9

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |2

1. Overview

The Lab Brick RF Switch SDK for Linux supports developers who want to control Lab Brick RF
Switch from Linux programs. For maximum compatibility, the SDK includes source code for C
functions to find, initialize, and control the RF switch along with header files and an example C
program which demonstrates the use of the API. These functions are written to use the ‘libusb’
library which comes with most Linux distributions or is easily installed.

2. Setting up the SDK

Before you can use the SDK or try the sample program, you need to make sure you have libusb
installed. You can retrieve source from the developer's site at http://www.libusb.org, or use your
distribution's package installer. Look for a package that contains “libusb-dev” in the package
name. For Debian and Ubuntu, “libusb-dev’”” should work. For Redhat and Fedora, look for
“libusb-devel”. If you have the library installed, “locate usb.h” should turn up an include file in
some appropriate location (perhaps '/usr/include') and that file should have declarations for
usb_init(), usb_set debug(), and usb_find devices() among others. Help forums exist for most
distributions and someone on one of these forums can probably help you find the appropriate
library. Contact us if you get stuck. The SDK also uses the Posix thread functions found in the
'pthread' library. Again, most recent distributions will have this library preinstalled.

3. Using the SDK

The SDK consists of source code for the SDK functions, a .H header file for your C program, a
sample C program (LSWtest.c) and a Makefile which demonstrates how to build your code to
use the functions. Untar the SDK into a convenient place on your hard disk (tar —xv

Vaunix LSW_Vxx.tar) and then copy these files into the directory of the executable program
you are creating. Start by trying to build the sample (make all). If the build is successful, you're
ready to add these functions to your own program. Add the header file (LSWhid.h) to your
project and include it with the other header files in your program. Modify the make file by
replacing 'LSWtest' with your program name. Or simply compile your program with the
command line “gcc -o LSWtest -Im -Ipthread -lusb <yourprogram>.c LSWhid.c“In this case, the
compiler will send the final output to LSW'test', link with the math, thread and usb libraries, and
for source will use your program and the SDK source file, "TLSWhid.c'.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |3

4. Programming

4.1 Overall Strategy and API Architecture

The API provides functions for identifying how many and what type of Lab Brick RF Switches
are connected to the system, initializing RF switches so that you can send them commands and
read their state, functions to control the operation of the RF switches, and finally a function to
close the software connection to the RF switch when you no longer need to communicate with it.

The API can be operated in test mode, where the functions will simulate normal operation but
will not actually communicate with the hardware devices. This feature is provided as a
convenience to software developers who may not have a Lab Brick RF switch with them but still
want to be able to work on an applications program that uses the Lab Brick. Of course, it is
important to make sure that the API is in its normal mode in order to access the actual hardware.

Before you do anything else, you MUST clear the SDK’s internal structures. This is simply a call
to fnLSW _Init() and only needs to be done once.

Be sure to call fnLSW_SetTestMode(FALSE), unless of course you want the API to operate in
its test mode. In test mode there will be 2 devices, an LSW-602PDT and an LSW-602P4T.

The first step in talking to the devices is to identify the RF Switches connected to the system.
Call the function fnLSW_GetNumDevices() to get the number of RF Switches attached to the
system. Note that USB devices can be attached and detached by users at any time. If you are
writing a program which needs to handle the situation where devices are attached or detached
while the program is operating, you should periodically call tnLSW_GetNumDevices() to see if
any new devices have been attached.

Allocate an array big enough to hold the device ids for the number of devices present. While you
should use the DEVID type declared in LSWhid.h it’s just an array of unsigned ints at this point.
You may want to just allocate an array large enough to hold MAXDEVICES device ids, so that
you do not have to handle the case where the number of attached devices increases.

Call fnLSW_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device
ids for each connected RF Switch. The function returns an integer, which is the number of
devices present on the machine.

The next step is to call inLSW_GetModelName(DEVID devicelD, char *ModelName) with a
null ModelName pointer to get the length of the model name, or just use a buffer that can hold
MAX MODELNAME chars. You can use the model name to identify the type of RF Switch.
Call tnLSW_ GetSerialNumber(DEVID devicelD) to get the serial number of the RF Switch.
Based on that information, your program can determine which device to open.

Once you have identified the RF Switch you want to send commands to, call

ftnLSW_InitDevice(DEVID devicelD) to actually open the device and get its various parameters
like the number of switches it has, etc. After the fnLSW _InitDevice function has been completed
you can use any of the get functions to read the settings of the RF Switch.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |4

To change one of the settings of the RF Switch, use the corresponding set function. For example,
to set a switch selection for non-expandable devices (LSW-502/602 series switches), call
fmLSW_SetSwitch (DEVID devicelD, int inputselect). The first argument is the device id of the
RF Switch; the second is the desired switch selection. The RF outputs are numbered sequentially
from 1 to 4 for the LSW-602P4T. For the LSW-602PDT the output 1 or 2 can be selected. For
expandable devices (LSW-802/203/403 series switches), call
ftmnLSW_SetSwitchRFoutput(DEVID devicelD, int swindex, int swport). The first argument is the
device id of the RF Switch; the second is the switch index corresponding to the expansion bus
index of the desired switch (1 for single-unit devices); the third is the desired switch selection.

When you are done with the device, call fnLSW_CloseDevice(DEVID devicelD).

4.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get
functions normally return an integer value, but in the event of an error they will return an error
code. The error codes can be distinguished from normal data by their numeric value, since all
error codes have their high bit set, and they are outside of the range of normal data. Error codes
are defined in the LSWhid.h header file, and can be interpreted using the function
tLSW_perror(LVSTATUS status).

A separate function, fnLSW_GetDeviceStatus(DEVID devicelD) provides access to a set of
status bits describing the operating state of the RF Switch. This function can be used to check if a
device is currently connected or open.

The values of the status codes are defined in the LSWhid.h header file.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |5

4.3 Functions — Setting up the Environment & Housekeeping
void fnLSW _ Init(void)

Must be called once at the beginning of the user program to clear out the SDK's data structures
and initialize the USB library functions.

void fnLSW_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the library does not
communicate with the actual hardware but simulates the basic operation of the library functions.
It does not simulate the dynamic operation of the actual hardware, but it does simulate the
behavior of the functions used to set and get the parameters in the device. Thus, API calls which
start switch patterns, or pulsed mode switching, will not cause the same changes in status
variables as actual hardware would.

char* fnLSW_perror(LVSTATUS status)

Useful for debugging your user program, fnLSW _perror() takes a returned LVSTATUS value
from another function and returns a pointer to a descriptive string you can display on screen or
log.

char* fnLSW_LibVersion(void)

Returns a string which contains the version number of the SDK. If possible, call this function
once when your program starts so you know the version number — that way, if you have
questions or problems, you can include this version information in your question to us.

4.4 Functions — Selecting the Device
int fnLSW_ GetNumDevices()

This function returns a count of the number of connected Lab Brick RF Switch devices.

int fnLSW_ GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected RF Switches.
Note that the array must be large enough to hold a device id for the number of devices returned
by fnLSW_GetNumDevices. The function also returns the number of active devices, which can,
under some circumstances, be less than the number of devices returned in the previous call to
ftnLSW_GetNumDevices.

The device ids are used to identify each device and are used in the rest of the functions to select
the device. Note that while the device ids may be small integers, and may, in some circumstances

appear to be numerically related to the devices present, they should only be used as opaque
handles.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |6

int tnLSW_GetModelName(DEVID devicelD, char *ModelName)

This function is used to get the model name of the RF Switch. If the function is called with a null
pointer, it returns just the length of the model name string. If the function is called with a non-
null string pointer it copies the model name into the string and returns the length of the string.
The string length will never be greater than the constant MAX MODELNAME which is defined
in LSWhid.h. This function can be used regardless of whether or not the RF Switch has been
initialized with the fnLSW _InitDevice function.

int tnLSW_ GetSerialNumber(DEVID devicelD)

This function is used to get the serial number of the RF Switch. It can be called regardless of
whether or not the RF Switch has been initialized with the fnLSW _InitDevice function. If your
system has multiple RF Switches, your software should use each device’s serial number to keep

track of each specific device. Do not rely upon the order in which the devices appear in the table
of.

int fnLSW_InitDevice(DEVID devicelD)

This function is used to open the device interface to the switch and initialize the dll’s copy of the
device’s settings. If the fnLSW _InitDevice function succeeds, then you can use the various
ftnLSW_Get* functions to read the swicth settings. This function will fail, and return an error
code if the switch has already been opened by another program.

int tnLSW_ CloseDevice(DEVID devicelD)

This function closes the device interface to the switch. It should be called when your program is
done using the switch.

int fnLDA_GetIPMode(DEVID devicelD)

This function is used to read the IP mode configuration of the device. Response data “0”
represents the “Static” mode, “1” represents the “DHCP” mode.

int fnLDA_GetIPAddress(DEVID devicelD, char *ip)

This function is used to read the IP address of the device.

int fnLDA_GetNetmask(DEVID devicelD, char *netmask)

This function is used to read the netmask of the device.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |7

int fnLDA GetGateway (DEVID devicelD, char *gateway)

This function is used to read the gateway address of the device.

4.5 Functions — Setting Parameters
int fnLSW_ SetSwitch (DEVID devicelD, int select)

This function is used to set the position of the switch for non-expandable devices (LSW-502/602
series switches). The first argument is the device id of the RF Switch, the second is the desired
switch selection. The RF outputs are numbered sequentially from 1 to numSwitches, where
numSwitches in the number of switches for the device returned by the fnLSW_GetNumSwitches
function.

int fnLSW_ SetSwitchRFoutput(DEVID devicelD, int swindex, int swport)

This function is used to set the Switch RF output state for the corresponding switch index for
expandable devices (LSW-802/203/403 series switches). The first argument is the device ID of
the RF switch, the second argument is the switch index corresponding to the expansion bus index
of the desired switch (1 for single-unit devices), and the third argument is the RF outputs. The
RF outputs are numbered sequentially from 1 to numSwitches, where numSwitches in the
number of switches for the device returned by the fnLSW_GetNumSwitches function.

int fnLSW_ SetUseExternalControl (DEVID devicelD, bool external);

This function is used to select internal or external control of the RF Switches. If external is
TRUE, then the Lab Brick RF Switch will be controlled by the external control signal input or
inputs.

int fnLSW_ SetPattern(DEVID devicelD, int num_entries, int sw_select[], int holdtime[])

This function sets the parameters for a switch pattern. A switch pattern consists of a set of pattern
elements, where each element defines a switch setting and a hold time. When the pattern is
activated the Lab Brick RF Switch steps through the pattern elements, waiting for the specified
hold time at each step. Hold times are specified in milliseconds, with the minimum being 1
millisecond. Currently, a pattern can have at most four entries, so the maximum value for
num_entries is 4. The array of switch selections, sw_select, has one element for each step in the
pattern, and that element holds a switch number from 1 to 4. To start or stop a pattern use the
fnLSW_ StartPattern function.

int tnLSW_ StartPattern(DEVID devicelD, bool go)

Calling this function with go set to TRUE starts a switch pattern sequence at the beginning. To
stop the pattern, call this function with go set to FALSE.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |8

int tnLSW_ SetPatternType(DEVID devicelD, bool continuous)

Calling this function with continuous set to TRUE before starting the pattern in order to have the
pattern repeat. If continuous is set to FALSE the pattern will only run once when it is started.

int tnLSW_ SetPatternEntry(DEVID devicelD, int sw_select, int holdtime, int index, bool
last entry)

This function can be used to set individual elements of the pattern. The argument SW select is
the switch setting, from 1 to 4. The argument holdtime is the length of time that the pattern will
hold each switch setting, expressed as an integer number of milliseconds. The argument index is
the zero-based position in the pattern, ranging from 0 to 3. The last entry argument should be set
to TRUE only for the final element in the pattern. For example, the following set of calls define a
pattern with three steps, where switch 1 is active for 1 second, switch 2 is active for .1 seconds,
and switch 3 is active for 10 seconds on device 5:

result = fnLSW_ SetPatternEntry(5, 1, 1000, 0, FALSE);
result = fnLSW_ SetPatternEntry(5, 2, 100, 1, FALSE);
result = fnLSW_ SetPatternEntry(5, 3, 10000, 2, TRUE);

int fnLSW_ SetFastPulsedOutput(DEVID devicelD, float pulseontime, float pulsereptime, bool
on)

This function is the preferred way to control the internal pulse switching option. The pulseontime
parameter is the length of the pulse on time (switch 1 active) in seconds. The pulsereptime
parameter is the length of the repetition period in seconds. Both values can range from 100
nanoseconds (0.100e-6) to 1000 seconds (1.0e3). Set on = TRUE to start the pulsed output
modulation.

int fnLSW_ SetPulseOnTime(DEVID devicelD, float pulseontime)

This function is used to set the length of the RF pulse on time of the device’s internal pulse
switching. The pulseontime parameter is the length of the pulse on time (switch 1 active) in
seconds, with a 100 nanosecond minimum. This function is not recommended for general use.
Instead use the fnLSW _ SetFastPulsedOutput function.

int fnLSW_ SetPulseOffTime(DEVID devicelD, float pulseofftime)

This function is used to set the length of the RF pulse off time of the device’s internal pulse
switching. The pulseofftime parameter is the length of the pulse off time (switch 2 active) in
seconds, with a 100 nanosecond minimum. The repetition period of the pulse modulation is equal
to pulseontime + pulseofftime. This function is not recommended for general use. Instead use the
fnLSW_ SetFastPulsedOutput function.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |9

int fnLSW_ EnablelnternalPulseMod(DEVID devicelD, bool on)

This function is used to turn on and off the internal pulse switching. If on = TRUE the switch
will switch the RF output between switch 1 and switch 2 according to the values set for the pulse
on time and pulse off time using either the fnLSW_SetFastPulsedOutput function or the
functions to set pulse on and off time directly. To stop the internal pulse switching, set on =
FALSE. Always disable internal pulse switching before setting the pulse on and off time using
the tnLSW_ SetPulseOnTime and fnLSW_SetPulseOffTime functions.

int fnLSW_ SaveSettings(DEVID devicelD)

The Lab Brick RF Switches can save their settings and then resume operating with the saved
settings when they are powered up. Set the desired parameters, then use this function to save the
settings.

4.6 Functions — Reading Parameters
int fnLSW_ GetNumSwitches (DEVID devicelD)

This function returns the base number of switches in the selected device. This is a read only
value.

int tnLSW_ GetMaxSwitchDevices(DEVID devicelD)

This function returns the number of switch devices connected via expansion bus for the specified
device ID.

int tnLSW_ GetActiveSwitch (DEVID devicelD)

This function returns the current switch connection of the selected device for non-expandable
devices (LSW-502/602 series switches). This value may differ from the current switch setting
when an external signal is used to control the switch, or when a switch pattern is running, or
during pulse mode operation. Note that for rapidly changing switch connections due to an
external signal, switch patterns or pulse mode operation the value returned by the
GetActiveSwitch function may not be a useful indicator of the actual switch connection since the
value returned represents the switch connection at the last status report which is asynchronous
with respect to the call to the GetActiveSwitch function.

int tnLSW_ GetSwitchSetting (DEVID devicelD)

This function returns the current switch setting of the selected device for non-expandable devices
(LSW-502/602 series switches). In normal operation, this value is the same as the active switch,
except in the conditions described above.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |10

int tnLSW_ GetSwitchRFoutput(DEVID devicelD, int swindex)

This function is used to get the Switch RF output state for the corresponding switch index for
expandable devices (LSW-802/203/403 series switches). The first argument is the device ID of
the RF switch, the second argument is the switch index corresponding to the expansion bus index
of the desired switch (1 for single-unit devices).

int fnLSW_ GetUseExternalControl (DEVID devicelD)

This function returns a non-zero value if the Lab Brick RF Switch has been set to use an external
signal to control the switches.

float tnLSW_GetPulseOnTime(DEVID devicelD)

This function returns the pulse on time, which is the length of time that RF input is connected to
output switch 1 when internal pulse modulation is operating, in seconds.

float tnLSW_ GetPulseOffTime(DEVID devicelD)

This function returns the pulse off time, which is the length of time that RF output is connected
to switch 2 when internal pulse modulation is operating, in seconds. The pulse repetition period
is equal to the pulse on time added to the pulse off time.

int tnLSW_ GetPulseMode(DEVID devicelD)

This function returns an integer value which is 1 when the RF Switch’s internal pulse modulation
is active, or 0 when the internal pulse modulation is off.

int tnLSW_ GetHasFastPulseMode(DEVID devicelD)

This function is included for compatibility with software developed for other Lab Brick products.
All Lab Brick RF Switches have fast pulse mode switching.

int tnLSW_ GetPatternLength (DEVID devicelD);

This function returns an integer value which is the number of elements in the switch pattern.
Currently, the maximum pattern length is 4. A pattern length of 0 indicates that no pattern has
been loaded into the Lab Brick RF Switch.

int fnLSW_ GetPatternType (DEVID devicelD);

This function returns the current pattern type. A value of 1 indicates that a single shot pattern
was selected, and a value of 2 indicates that a repeating pattern was selected.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |11

int tnLSW_ GetPatternEntrySwitch (DEVID devicelD, int index);

This function returns the switch setting for a particular element in the array of switch settings
that define the switch pattern. The index ranges from 0 to 3. A value of zero indicates the end of
the pattern, while values of 1 to 4 indicate the switch setting for that step in the pattern.

int fnLSW_ GetPatternEntryTime (DEVID devicelD);

This function returns the hold time for a particular element in the array of switch settings that
define the switch pattern. The index ranges from 0 to 3. The integer value returned is the length
of time, in 1 millisecond increments that the switch will remain at that step in the pattern

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

