VAUNIX TECHNOLOGY CORPORATION
e o o 0 O

vaunix

Lab Brick® LSW Series RF Switch

Linux Ethernet API User Manual

Revision B

8/20/2025

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide for the
customized programming of Lab Brick products. The drawings, specifications, and information contained
herein are the property of Vaunix Technology Corporation, and any unauthorized use or disclosure of
these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used
in whole or in part as the basis for manufacture or sale of the equipment or software programs without the
prior written consent of Vaunix Technology Corporation.

Page |1

Table of Contents

0 T T 2
2. USING the SDKiiiiieiiiiiiniiiiiiieiiiieeniiiiienesiisiensssssimesssssstesssssssmesssssstsssssssssssssssssssnsssssssnns 2
T oY= = 1140 011 - 2
3.1 Overall Strategy and APl ArChit@CtUrecooviiiiiiiiee e 2
3.2 STAtUS COUBS. ...eeiiutiieiiiee ettt ettt et e e bt e e e bt e e e bt e e e bt e e sabeeesabeeesabeeeeabeeeenneesnnneenas 3
3.3 Functions — Setting up the Environment & HouSEKeEPINg......ccevevvviveeiiriiiie e 4
3.4 Functions — Selecting the DEVICEcccoe it e e e e 4
3.5 FUNCLIONS — SEttiNG ParametersS . .cccie i s e s e e e e e e e e e e e e e e 5
3.6 Functions — Reading ParameEterscccoccccciiiiieeie et ee e e eerrere e e e s e e e s rea e e e e e s e e nnnaees 5

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |2

1. Overview

The Lab Brick RF Switch Linux SDK supports developers who want to control Lab Brick RF
Switch over Ethernet from Linux programs. For maximum compatibility, the SDK includes
source code for C functions to initialize and control the switch, along with header files and an
example C program which demonstrates the use of the API. These functions are written to use
the standard Ethernet Sockets library which comes with most Linux distributions.

2. Using the SDK

The SDK consists of source code for the SDK functions, a .H header file for your C program, a
sample C program (Iswtestapp.c) and a Makefile which demonstrates how to build your code to
use the functions. Untar the SDK into a convenient place on your hard disk (tar —xv

<Isw_sdk name>.tar) and then copy these files into the directory of the executable program you
are creating. Start by trying to build the sample (make all). If the build is successful, you're ready
to add these functions to your own program. Add the header file (Iswdrvr.h) to your project and
include it with the other header files in your program. Modify the make file by replacing
‘Iswtestapp.c’ with your program name. Or simply compile your program with the command line
“gce -0 LSWtest -Im -Ipthread -lusb <yourprogram>.c LSWhid.c*. In this case, the compiler will
send the final output to LSWtest, link with the math, thread and other necessary libraries, and for
source will use your program and the SDK source file, Iswsocket.c'.

3. Programming

3.1 Overall Strategy and API Architecture

The API provides functions for identifying how many and what type of Lab Brick RF Switch are
connected to the system, initializing switches so that you can send them commands and read

their state, functions to control the operation of the RF switch, and finally a function to close the
software connection to the RF switch when you no longer need to communicate with the device.

The API can be operated in test mode, where the functions will simulate normal operation but
will not actually communicate with the hardware devices. This feature is provided as a
convenience to software developers who may not have a Lab Brick RF switch with them but still
want to be able to work on an applications program that uses the Lab Brick. Of course, it is
important to make sure that the API is in its normal mode to access the actual hardware.

Before you do anything else, you MUST clear the SDK’s internal structures. This is simply a call
to fnLSW _Init() and only needs to be done once.

Be sure to call fnLSW_SetTestMode(FALSE), unless of course you want the API to operate in
its test mode. In test mode, the functions will simulate normal operation but will not actually
communicate with the hardware devices. This feature is provided as a convenience to software
developers who may not have a LabBrick RF Switch with them, but still want to be able to work
on an applications program that uses the LabBrick. Of course, it is important to make sure that
the API is in its normal mode in order to access the actual hardware!

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |3

For each of the LSW devices that you have, determine its IP address, and create a string with the
IP address in the form:

char myLSW[] = {%192.168.100.10”};

For variables you want to get from the LSW device, allocate a variable to receive the result from
the library (this API uses a call by reference for parameters). For example, to get the switch RF
output, you could allocate an integer value rfOutput to receive the respdata:

int rfOutput;
And then pass the address of that variable to the library function:
tLSW_GetSwitchRFoutput(myLSW, swindex, &rfOutput);

Once you have selected the RF switch you want to send commands to, call

ftnLSW _InitDevice(char* deviceip) to actually open the device and get its various parameters.
After the fnLSW _InitDevice function has completed, you can use any of the get functions to read
the settings of the switch. This function generates a lot of traffic to the device, so it should be
used once at the beginning of your use of the switch.

The next step is to call fnLSW_CheckDeviceReady(char* deviceip) to check if the device is
ready and available.

You can call fnLSW_GetModelName(char* deviceip, char* respdata), using a buffer that can
hold MAX MODELNAME chars to obtain the model name to identify the type of switch.

Call fnLSW_ GetSerialNumber(char* deviceip, int* respdata) to get the serial number of the
switch. Based on that information, your program can determine which device to open.

To change one of the settings of the switch, use the corresponding set function. For example, to
set the output state for a specified switch index, call fnLSW_SetSwitchRFoutput(char* deviceip,
int swindex, LSW_SWPORT T swport). The first argument is the device ID of the RF switch,
the second argument is the switch index corresponding to the expansion bus index of the desired
switch (1 for single-unit devices), and the third argument is the RF outputs. The RF outputs are
numbered sequentially from 1 to numSwitches, where numSwitches in the number of switches
for the device returned by the fnLSW_GetNumSwitches function.

When you are done with he device, call inLSW_CloseDevice(char* deviceip).

3.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get
functions normally return an integer value, but in the event of an error they will return an error
code. The error codes can be distinguished from normal data by their numeric value, since all
error codes have their high bit set, and they are outside of the range of normal data.

The values of the status codes are defined in the Iswdrvr.h header file.

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |4

3.3 Functions — Setting up the Environment & Housekeeping
void fnLSW _ Init(void)

This function will be used to initialize LSW device data structures.

void fnLSW_ SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the library does not
communicate with the actual hardware but simulates the basic operation of the library functions.

char* fnLSW_perror(LVSTATUS status)

Useful for debugging your user program, fnLSW _perror() takes a returned LVSTATUS value
from another function and returns a pointer to a descriptive string you can display on screen or
log.

char* fnLSW_LibVersion(void)

Returns a string which contains the version number of the SDK. If possible, call this function
once when your program starts so you know the version number — that way, if you have
questions or problems, you can include this version information in your question to us.

3.4 Functions — Selecting the Device
int fnLSW_ InitDevice(char* deviceip)

This function is used to open the device interface socket connection over ethernet to the RF
Switch and initialize the library’s copy of the device’s settings. If the fnLSW_InitDevice
function succeeds, then you can use the various fnLSW_Get* functions to read the RF Switch’s
settings. This function will fail, and return an error status if the RF Switch has already been
opened by another program.

int fnLSW_ CloseDevice(char* deviceip)

This function closes the device socket interface to the RF Switch. It should be called when your
program is done using the RF Switch.

int tnLSW_ CheckDeviceReady(char* deviceip)

This function will be used to check whether the device is ready to get/set the parameters of the
LSW RF Switch device.

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |5

3.5 Functions — Setting parameters
int fnLSW_ SetSwitchRFoutput(char* deviceip, int swindex, LSW_SWPORT T swport)

This function is used to set the Switch RF output state for the corresponding switch index. The
first argument is the device ID of the RF switch, the second argument is the switch index
corresponding to the expansion bus index of the desired switch (1 for single-unit devices), and
the third argument is the RF outputs. The RF outputs are numbered sequentially from 1 to
numSwitches, where numSwitches in the number of switches for the device returned by the
fnLSW_GetNumSwitches function.

int fnLDA_SaveSettings(char* deviceip)

The LabBrick RF switch can save their settings then resume operating with the saved settings
when they are powered up. Set the desired parameters, then use this function to save the settings.

3.6 Functions — Reading parameters

All Get function calls take two arguments one pointer pointing to the device IP string and the
other is the response data pointer.

int fnLSW_ GetModelName(char* deviceip, char *respdata)

This function is used to get the model name of the RF Switch.

int fnLSW_ GetSerialNumber(char* deviceip, int* respdata)
This function is used to get the serial number of the RF Switch.

int fnLSW_ GetSoftwareVersion(char* deviceip, char* respdata)

This function is used to read the software version of the device.

int fnLSW_ GetIPMode(char* deviceip, int* respdata)

This function is used to read the IP mode configuration of the device. Response data “0”
represents the “Static” mode, “1” represents the “DHCP” mode.

int fnLSW_ GetIPAddress(char* deviceip, char* respdata)

This function is used to read the IP address of the device.

int tnLSW_ GetNetmask(char* deviceip, char* respdata)

This function is used to read the netmask of the device.

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |6

int tnLSW_ GetGateway (char* deviceip, char* respdata)

This function is used to read the gateway address of the device.

int fnLSW_ GetNumSwitches(char* deviceip, int* respdata)

This function returns the base number of switches in the selected device. This is a read only
value.

int fnLSW_ GetMaxSwitchDevices(char* deviceip, int* respdata)

This function is used to read the max RF switches device.

int fnLSW_ GetSwitchRFoutput(char* deviceip, int swindex, int* respdata)

This function is used to get the Switch RF output state for the corresponding switch index. The
first argument is the device ID of the RF switch, the second argument is the switch index
corresponding to the expansion bus index of the desired switch (1 for single-unit devices).

Vaunix Technology Corporation

= www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

