

Vaunix LabBrick Digital Attenuator

GNU/Linux SDK for libusb 1.0

Version 1.05

Overview

The Vaunix LabBrick Digital Attenuator (LDA) SDK for Linux supports developers who want to

control LabBrick Digital Attenuators from Linux programs. For maximum compatibility, the

SDK includes source code for C functions to find, initialize, and control the attenuators, along

with header files and example C programs which demonstrates the use of the API. These

functions are written to use the 'libusb 1.0' library which comes with most Linux distributions or

is easily installed.

Setting up for the SDK

Before you can use the SDK or try the sample program, you need to make sure you have the

developer version of libusb 1.0 installed. You can retrieve source from the developer's site at

http://libusb.info, or use your distribution's package installer. Look for a package that contains

“libusb-dev” in the package name. For Debian and Ubuntu, “libusb-1.0-0-dev” should work.

Once you have the library installed, “locate libusb.h” should turn up an include file in some

appropriate location (perhaps '/usr/include/libusb-1.0/libusb.h'). Help forums exist for most

distributions and someone on one of these forums can probably help you find the appropriate

library. Contact us if you get stuck.

Note that the make file command line for building the library may need to be edited since

different distributions of the libusb library may rename the library.

The SDK also uses the Posix thread functions found in the 'pthread' library. Again, most recent

distributions will have this library preinstalled.

Using the SDK

The SDK consists of source code for the SDK functions, a .H header file for your C program,

two sample C programs (test.c and profile_test.c) and a Makefile which demonstrates how to

build your code to use the functions. Untar or unzip the SDK into a convenient place on your

hard disk, and then copy these files into the directory of the executable program you are creating.

Start by trying to build the sample (make all). If the build is successful, you're ready to add these

functions to your own program. Add the header file (LDAhid.h) to your project, and
include it with the other header files in your program. Modify the make file by replacing 'test'

with your program name. Or simply compile your program with the command line “gcc -o

test -lm -lpthread -lusb-1.0 <yourprogram>.c LDAhid.c“ In this case, the compiler

will send the final output to 'test', link with the math, thread and usb libraries, and for source will
use your program and the SDK source file, 'LDAhid.c'. (Note that on some systems the libusb

library may be renamed)

Overall Strategy and API architecture

The API provides functions for identifying how many and what type of LabBrick digital

attenuators are connected to the system, initializing the attenuators so that you can send them

commands and read their state, functions to control the operation of the attenuators, and finally a

function to close the software connection to each attenuator when you no longer need to

communicate with it.

The API can be operated in a test mode, where the functions will simulate normal operation but

will not actually communicate with the hardware devices. This feature is provided as a

convenience to software developers who may not have a LabBrick digital attenuator with them,

but still want to be able to work on an applications program that uses the LabBrick. Of course it

is important to make sure that the API is in its normal mode in order to access the actual

hardware!

Before you do anything else, you MUST clear the SDK's internal structures. This is simply a call

to fnLDA_Init() and only needs to be done once.

Be sure to call fnLDA_SetTestMode(FALSE), unless of course you want the API to operate in

its test mode. In test mode there will be 2 devices, an LDA-102 and an LDA-602.

The first step in talking to the devices is to identify the attenuators connected to the system. Call
the function fnLDA_GetNumDevices() to get the number of attenuators attached to the system.
Note that USB devices can be attached and detached by users at any time. If you are writing a
program which needs to handle the situation where devices are attached or detached while the
program is operating, you should periodically call fnLDA_GetNumDevices() to see if any new
devices have been attached.1

Allocate an array big enough to hold the device ids for the number of devices present. While you

should use the DEVID type declared in LDAhid.h it’s just an array of unsigned ints at this point.

You may want to just allocate an array large enough to hold MAXDEVICES device ids, so that

you do not have to handle the case where the number of attached devices increases.

Call fnLDA_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device

ids for each connected digital attenuator. The function returns an integer, which is the number of

devices present on the machine.

The next step is to call fnLDA_GetModelName(DEVID deviceID, char *ModelName) with a

null ModelName pointer to get the length of the model name, or just use a buffer that can hold

MAX_MODELNAME chars. You can use the model name to identify the type of attenuator.

1 Usually it is a good idea to call fnLDA_GetNumDevices() at around 1 second intervals. While a short

interval reduces the chances, it is still possible that the user will remove one device and replace it with another

however, so to completely handle all the cases which can result from users hot plugging devices your application

needs to check to see not only if the number of devices is different, but if the same number of devices are present,

that they are not different devices.

Call fnLDA_GetSerialNumber(DEVID deviceID) to get the serial number of the attenuator.

Based on that information, your program can determine which device to open.

Once you have identified the attenuator you want to send commands to, call

fnLDA_InitDevice(DEVID deviceID) to actually open the device and get its various parameters

like attenuation, working frequency setting, ramp parameters, etc. After the fnLDA_InitDevice

function has completed you can use any of the get functions to read the settings of the attenuator.

For attenuators that have multiple channels, use the fnLDA_SetChannel function to select which

channel the API commands are directed to. Channels are numbered from 1 to N, where N may be

4 or 8 depending on the model of the attenuator. You can use the FnLDA_GetNumChannels

function to determine how many channels and attenuator has.

Attenuation Settings

To change one of the settings of the attenuator, use the corresponding set function. For example,

to set the attenuation level, call fnLDA_SetAttenuation(DEVID deviceID, int attenuation). The

first argument is the device id of the attenuator, the second is the attenuation value.

For the 1.05 SDK attenuation is specified in .05 dB units. As a result the attenuation value is

computed by multiplying the desired attenuation in dB by 20. For example:

attenuation = (int) (DesiredAttenuation * 20); // DesiredAttenuation can be a float in dB

Note that earlier versions of the SDK specified attenuation in 0.25 dB increments. You can easily

convert from the 0.25 to 0.05 dB increments by multiplying by 5 or, when converting from .05

dB units to 0.25 dB units, divide by 5.

Note that the LabBrick attenuators have a maximum and minimum settable attenuation level.

You can query the limits with calls to fnLDA_GetMaxAttenuation(DEVID deviceID) and

fnLDA_GetMinAttenuation(DEVID deviceID). Both functions use the same encoding of the

powerlevel as the SetAttenuation function.

When you are done with the device, call fnLDA_CloseDevice(DEVID deviceID).

Some high resolution LabBrick attenuators require the working frequency to be set. For these

attenuators use the fnLDA_SetWorkingFrequency(DEVID deviceID) function. The frequency is

specified in 100 KHz units, so a working frequency of 1 GHz has the value 10,000.

Time values are represented in units of 1 millisecond, so a dwell time of 1.5 seconds is

represented by 1500.

Status Codes

All of the set functions return a status code indicating whether an error occurred. The get

functions normally return an integer value, but in the event of an error they will return an error

code. The error codes can be distinguished from normal data by their numeric value, since all

error codes have their high bit set, and they are outside of the range of normal data.

A separate function, fnLDA_GetDeviceStatus(DEVID deviceID) provides access to a set of

status bits describing the operating state of the attenuator. This function can be used to check if a

device is currently connected or open, and if a device is currently ramping or playing a profile.

The values of the status codes are defined in the LDAhid.h header file.

Functions – Setting up the environment & housekeeping

void fnLDA_Init(void)

Must be called once at the beginning of the user program to clear out the SDK's data

structures, and initialize the USB library functions.

char* fnLDA_perror(LVSTATUS status)

Useful for debugging your user program, fnLDA_perror() takes a returned LVSTATUS value

from another function and returns a pointer to a descriptive string you can display on screen

or log.

char* fnDA_LibVersion(void)

Returns a string which contains the version number of the SDK. If possible, call this function

once when your program starts so you know the version number – that way, if you have

questions or problems, you can include this version information in your question to us.

void fnLDASetTraceLevel(int tracelevel, int IOtracelevel, bool verbose)

Sets variables used to control trace messages from the LDAhid library and potentially the

underlying libusb library. These messages can be helpful for debugging. See the source code

for more details, debug messages must be enabled in the LDAhid.c source code.

Functions – Selecting the Device

void fnLDA_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not

communicate with the actual hardware, but simulates the basic operation of the dll functions.

It does not simulate the operation of frequency step sweeps generated by the actual hardware,

but it does simulate the behavior of the functions used to set the parameters for the stepped

sweeps.

int fnLDA_GetNumDevices()

This function returns a count of the number of connected attenuators.

int fnLDA_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected

attenuators. Note that the array must be large enough to hold a device id for the number of

devices returned by fnLDA_GetNumDevices. The function also returns the number of active

devices, which can, under some circumstances, be less than the number of devices returned in

the previous call to fnLDA_GetNumDevices.

The device ids are used to identify each device, and are used in the rest of the functions to

select the device. Note that while the device ids may be small integers, and may, in some

circumstances appear to be numerically related to the devices present, they should only be

used as opaque handles.

int fnLDA_GetModelName(DEVID deviceID, char *ModelName)

This function is used to get the model name of the attenuator. If the function is called with a

null pointer, it returns just the length of the model name string. If the function is called with a

non-null string pointer it copies the model name into the string and returns the length of the

string. The string length will never be greater than the constant MAX_MODELNAME which

is defined in LDAhid.h This function can be used regardless of whether or not the attenuator

has been initialized with the fnLDA_InitDevice function.

int fnLDA_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the attenuator. It can be called regardless of

whether or not the attenuator has been initialized with the fnLDA_InitDevice function. If your

system has multiple attenuators, your software should use each device’s serial number to keep

track of each specific device. Do not rely upon the order in which the devices appear in the

table of active devices. On a typical system the individual attenuators will typically be found

in the same order, but there is no guarantee that this will occur.

int fnLDA_GetDeviceStatus(DEVID deviceID)

This function can be used to obtain information about the status of a device, even before the

device is initialized. (Note that information on the sweep activity of the device is not

guaranteed to be available before the device is initialized.)

int fnLDA_InitDevice(DEVID deviceID)

This function is used to open the device interface to the attenuator and initialize the dll’s copy

of the device’s settings. If the fnLDA_InitDevice function succeeds, then you can use the

various fnLDA_Get* functions to read the attenuator’s settings. This function will fail, and

return an error code if the attenuator has already been opened by another program.

int fnLDA_CloseDevice(DEVID deviceID)

This function closes the device interface to the attenuator. It should be called when your

program is done using the attenuator. Closing devices is important, since the underlying

libusb library relies on CloseDevice being called for each open LDA device.

Functions – Setting parameters on the attenuator

LVSTATUS fnLDA_SetAttenuation(DEVID deviceID, int attenuation)

This function is used to set the output attenuation level. Attenuation is encoded as an integer

number of 0.05 dB steps (reduced from full output):

attenuation = (int) (Attenuation_in_dB * 20)

For example, to specify an output frequency of 30 dB, attenuation = 600. The attenuation

value must be within the range of the attached attenuator or an error will be returned.

LVSTATUS fnLDA_SetWorkingFrequency(DEVID deviceID, int frequency)

Some high resolution attenuators require a working frequency to be set. For these devices, use

this function to select the working frequency. Frequency is represented as an integer in units

of 100 KHz. Thus, a frequency of 1 GHz would be represented as 10,000.

LVSTATUS fnLDA_SetRampStart(DEVID deviceID, int rampstart)

This function sets the beginning value for a self-stepping ramp function. Encoding is in 0.05

dB increments as done in fnLDA_SetAttenuation.

LVSTATUS fnLDA_SetRampEnd(DEVID deviceID, int rampstop)

This function sets the ending or stop value for a self-stepping ramp function. Encoding is in

0.05 dB increments as done in fnLDA_SetAttenuation.

LVSTATUS fnLDA_SetAttenuationStep(DEVID deviceID, int attenuationstep)

This function sets the ramp step size in 0.05 dB units. The ramp will begin at the Start value,

increase by Step value once every DwellTime millseconds until it hits the End or Stop value.

LVSTATUS fnLDA_SetDwellTime(DEVID deviceID, int dwelltime)

The length of time each attenuation step will last, specified in milliseconds.

LVSTATUS fnLDA_SetIdleTime(DEVID deviceID, int idletime)

When continuous ramping is selected, the Idle (or Wait) time specifies how long to pause

between ramps, specified in milliseconds.

LVSTATUS fnLDA_SetRampDirection(DEVID deviceID, bool up)

This function determines the ramp direction. Set up=TRUE to go from lower (less

attenuation) to higher (more attenuation) values.

LVSTATUS fnLDA_SetRampMode(DEVID deviceID, bool mode)

This function sets the ramp function to be a continuous sequence of repeating ramps

(mode=TRUE) or a single ramp (mode=FALSE)

LVSTATUS fnLDA_SetRampBidirectional(DEVID deviceID, bool bidir_enable)

This function sets whether the ramp is bidirectional, meaning that it goes from the starting

value to the ending value, waits for the Hold time, and then returns to the starting value.

During the second phase the devices uses AttenuationStepTwo and DwellTimeTwo.

LVSTATUS fnLDA_SetAttenuationStepTwo(DEVID deviceID, int attenuationstep)

This function sets the ramp step size in 0.05 dB units for the second phase of a bidirectional

ramp. The ramp will begin at the End value of the first phase, increase (or decrease) by

StepTwo value once every DwellTimeTwo millseconds until it hits the End value.

LVSTATUS fnLDA_SetDwellTimeTwo(DEVID deviceID, int dwelltime)

The length of time each attenuation step in the second phase of the ramp will last, specified in

milliseconds.

LVSTATUS fnLDA_SetHoldTime(DEVID deviceID, int idletime)

When bidirectional ramping is selected, the Hold time specifies how long to pause before

beginning the second phase of the ramp, specified in milliseconds.

LVSTATUS fnLDA_StartRamp(DEVID deviceID, bool go)

This function starts the automatic ramp in the mode you have previously selected. Set the

start, end dwell, idle direction and modes first, then call this with go=TRUE to begin the ramp

function.

LVSTATUS fnLDA_SetProfileElement(DEVID deviceID, int index, int attenuation);

This function sets the attenuation value of the specified element in the attenuation profile. The

profile can store either 50 elements, for high resolution attenuators, or 100 elements for low

resolution attenuators. The index starts at 0.

Some early LDA products do not support profiles, you can use the GetFeatures function to

determine if a particular device supports profiles.

LVSTATUS fnLDA_SetProfileCount(DEVID deviceID, int profilecount);

The number of elements in the profile, maximum either 50 or 100 depending on the LDA

hardware type.

LVSTATUS fnLDA_SetProfileDwellTime(DEVID deviceID, int dwelltime)

The length of time each attenuation step in the profile will last, specified in milliseconds.

LVSTATUS fnLDA_SetIdleTime(DEVID deviceID, int idletime)

When a repeating profile is selected, the Idle time specifies how long to pause between profile

repeats, specified in milliseconds.

LVSTATUS fnLDA_StartProfile(DEVID deviceID, int mode);

Used to start or stop the playing of an attenuation profile by the LDA device. A mode value of

zero stops the profile, 1 plays the profile once, and 2 plays the profile repeatedly.

LVSTATUS fnLDA_SaveSettings(DEVID deviceID)

The LabBrick attenuators can save their settings, and then resume operating with the saved

settings when they are powered up. Set the desired parameters, then use this function to save

the settings.

Functions – Reading parameters from the attenuator

int fnLDA_GetAttenuation(DEVID deviceID)

This function returns the current attenuation value, expressed in 0.05 dB units. A return value

of 300 would indicate signal attenuation of 300 / 20 or 15 dB.

int fnLDA_GetNumChannels(DEVID deviceID)

This function returns the number of channels supported by the device, either 1, 4 or 8 for

current LDA products.

int fnLDA_GetRampStart(DEVID deviceID)

This function returns the beginning value for ramp operations. The value expresses

attenuation in 0.05 dB increments. A return value of 400 would indicate signal attenuation of

400 / 20 or 20 dB at the beginning of a ramp.

int fnLDA_GetRampEnd(DEVID deviceID)

This function returns the ending value for ramp operations. The value expresses attenuation in

0.05 dB increments. A return value of 520 would indicate signal attenuation of 520 / 20 or 26

dB at the end of a ramp.

int fnLDA_GetDwellTime(DEVID deviceID)

Expressed in milliseconds, this returns the amount of time each ramp step will hold before

moving on to the next. A return value of 250 indicates that a ramp will composed of steps

lasting 250 milliseconds each.

int fnLDA_GetDwellTimeTwo(DEVID deviceID)

Expressed in milliseconds, this returns the amount of time each ramp step during the second

phase will hold before moving on to the next. A return value of 250 indicates that a ramp will

composed of steps lasting 250 milliseconds each.

int fnLDA_GetIdleTime(DEVID deviceID)

Expressed in milliseconds, this returns the amount of time to pause before restarting a ramp

when continuous operation is selected. A return value of 500 indicates that after a ramp

completes, the Lab Brick will wait 500 milliseconds before repeating the ramp operation.

int fnLDA_GetHoldTime(DEVID deviceID)

Expressed in milliseconds, this returns the amount of time to pause before starting the second

phase of a ramp when bidirectional operation is selected. A return value of 500 indicates that

after the first phase of a ramp completes, the Lab Brick will wait 500 milliseconds before

starting the second phase of the bidirectional ramp.

int fnLDA_GetAttenuationStep(DEVID deviceID)

Expressed in 0.05 dB increments, this function returns the magnitude of the change in

attenuation for each new step in a ramp. If this function returns 10, a ramp will start at the

Start value, and increment by 0.5 dB (10 * 0.05) once every Dwell Time milliseconds until it

reaches End or Stop (assuming the start attenuation is less than the end attenuation). If in

continuous mode, it will then wait Idle Time milliseconds before starting over.

int fnLDA_GetAttenuationStepTwo(DEVID deviceID)

Expressed in 0.05 dB increments, this function returns the magnitude of the change in

attenuation for each new step in the second phase of a ramp.

int fnLDA_GetMaxAttenuation(DEVID deviceID)

Returns the maximum attenuation value of the brick, expressed in 0.05 dB units. A value of

1260 indicates a maximum attenuation value of 1260 / 20 or 63 dB.

int fnLDA_GetMinAttenuation(DEVID deviceID)

Returns the minimum attenuation value of the brick. All standard LDA brick devices will

return 0, indicating a minimum attenuattion of 0 dB.

int fnLDA_GetMinAttenStep(DEVID deviceID)

int fnLDA_GetDevResolution (DEVID deviceID)

Both functions return the minimum possible change in attenuation value for the device. The

resolution is reported in .05db increments, so a returned value of 2 corresponds to .1db

resolution. The device will round down any attenuation value sent to it that exceeds it

resolution. The function FnLDA_GetDevResolution will be replaced with

fnLDA_GetMinAttenStep in a future version of the library. For new code use the

fnLDA_GetMinAttenStep function.

int fnLDA_GetFeatures(DEVID deviceID)

This function returns an integer where individual bits indicate features of the attenuator. See

the LDAhid.h file for the definitions of the bits.

int fnLDA_GetWorkingFrequency (DEVID deviceID)

This function is used to read the current frequency value of the device. The return value is in

100kHz resolution

int fnLDA_GetMinWorkingFrequency (DEVID deviceID)

This function is used to read the minimum frequency value of the device. The return value is

in 100kHz resolution

int fnLDA_GetMaxWorkingFrequency (DEVID deviceID)

This function is used to read the maximum frequency value of the device. The return value is

in 100kHz resolution

