VAUNIX TECHNOLOGY CORPORATION
e o o 0 O

vaunix

Lab Brick® LMS Series Signal Generators

Linux USB API User Manual

Revision B

8/19/2025

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide for the
customized programming of Lab Brick products. The drawings, specifications, and information contained
herein are the property of Vaunix Technology Corporation, and any unauthorized use or disclosure of
these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used
in whole or in part as the basis for manufacture or sale of the equipment or software programs without the
prior written consent of Vaunix Technology Corporation.

Page |1

Table of Contents

O L T T 2
2.Setting UP the SDKiiiiieiiiiiiiiiiiiiniiiireniisreeesisiressssistsensssssnesssssstsesssssssesnsssssssnssssssanns 2
3. USING the SDKiiiiiiiiiiiiiniiiiiiieiiiieeeiiiieeneiisieassssiresssssssessssssssesssssstsssssssssesssssssssnsssssssnne 2
4. ProgrammMING..cccciieeiiieuiiranisimnsiiienseirsessiessssrasstmssssmsssstssssstesssstsssssrssssssssssssssssssssssssssssssssssas 3
4.1 Overall Strategy and APl ArChit@CtUIEcuviiiiiiiiiie e 3
4.2 STATUS COUS. ...ttt ettt e et e e bt e e s bt e e e bt e e e bt e e sabe e e e bt e e saneesnneas 5
4.3 Functions — Setting up the environment & housekeeping.....ccccceeecvvriirieii e, 5
4.4 Functions — Selecting the DEVICEuuiiieiii ittt e e e e e earere e e e e e e e 6
4.5 FUNCLIONS — SETHING ParamMETerS . coviiiiiiiiiiiiiiiiiiiieeirererereererereererer ... 7
4.6 Functions — Reading ParameELersuuiiieiiiiic ittt e et e e e e e e e nnarer e e e e 11

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |2

1. Overview

The Lab Brick LMS Series Signal Generators SDK for Linux supports developers who want to
control Lab Brick LMS Series Signal Generators from Linux programs. For maximum
compatibility, the SDK includes source code for C functions to find, initialize, and control the
Signal Generators, along with header files and an example C program which demonstrates the
use of the API. These functions are written to use the ‘libusb’ library which comes with most
Linux distributions or is easily installed.

2. Setting up the SDK

Before you can use the SDK or try the sample program, you need to make sure you have libusb
installed. You can retrieve source from the developer's site at http://www.libusb.org, or use your
distribution's package installer. Look for a package that contains “libusb-dev” in the package
name. For Debian and Ubuntu, “libusb-dev” should work. For Redhat and Fedora, look for
“libusb-devel”. If you have the library installed, “locate usb.h” should turn up an include file in
some appropriate location (perhaps '/usr/include') and that file should have declarations for
usb_init(), usb_set debug(), and usb_find devices() among others. Help forums exist for most
distributions and someone on one of these forums can probably help you find the appropriate
library. Contact us if you get stuck.

The SDK also uses the Posix thread functions found in the 'pthread' library. Again, most recent
distributions will have this library preinstalled.

3. Using the SDK

The SDK consists of source code for the SDK functions, a .H header file for your C program, a
sample C program, and a Makefile which demonstrates how to build your code to use the
functions. Untar the SDK into a convenient place on your hard disk, and then copy these files
into the directory of the executable program you are creating. Start by trying to build the sample
(make all). If the build is successful, you're ready to add these functions to your own program.
Add the header file (Imsdrvr.h) to your project, and include it with the other header files in your
program. Modify the make file by replacing the test program name with your program name. Or
simply compile your program with the command line “gcc -o test -Im - Ipthread -lusb .c
Imsusb.c* In this case, the compiler will send the final output to 'test’, link with the math, thread
and usb libraries, and for source will use your program and the SDK source file, Imsusb.c'.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |3

4. Programming

4.1 Overall Strategy and API Architecture

The API provides functions for identifying how many and what type of Lab Brick LMS Signal
Generators are connected to the system, initializing Signal Generators so that you can send
them commands and read their state, functions to control the operation of the Signal Generators ,
and finally a function to close the software connection to the Signal Generators when you no
longer need to communicate with it.

The API can be operated in test mode, where the functions will simulate normal operation but
will not actually communicate with the hardware devices. This feature is provided as a
convenience to software developers who may not have a Lab Brick Signal Generators with them
but still want to be able to work on an applications program that uses the Lab Brick. Of course, it
is important to make sure that the API is in its normal mode to access the actual hardware!

Before you do anything else, you MUST clear the SDK’s internal structures. This is simply a call
to fnLMS_Init() and only needs to be done once.

Be sure to call fnLMS_SetTestMode(FALSE), unless of course you want the API to operate in
its test mode. In test mode there will be 2 devices, an LMS-103 and an LMS-123.

The first step is to identify the Signal Generators connected to the system. Call the function
fnLMS_GetNumDevices()' to get the number of Signal Generators attached to the system. Note
that USB devices can be attached and detached by users at any time. If you are writing a program
which needs to handle the situation where devices are attached or detached while the program is
operating, you should periodically call fnLMS_GetNumDevices() to see if any new devices have
been attached.

Allocate an array big enough to hold the device ids for the number of devices present. While you
should use the DEVID type declared in Imsdrvr.h it’s just an array of units at this point. You may
want to allocate an array large enough to hold MAXDEVICES device ids, so that you do not
have to handle the case where the number of attached devices increases.

Call fnLMS_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device
ids for each connected Signal Generator. The function returns an integer, which is the number of
devices present on the machine.

! Usually it is a good idea to call fnLMS_GetNumDevices() at around 1 second intervals. While a short interval
reduces the chances, it is still possible that the user will remove one device and replace it with another however, so
to completely handle all the cases which can result from users hot plugging devices your application needs to check
to see not only if the number of devices is different, but if the same number of devices are present, that they are not
different devices.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |4

The next step is to call tnLMS GetModelName(DEVID devicelD, char *ModelName) with a
null ModelName pointer to get the length of the model name, or just use a buffer that can hold
MAX MODELNAME chars. You can use the model name to identify the type of Signal
Generators. Call fnLMS_GetSerialNumber(DEVID devicelD) to get the serial number of the
Signal Generators. Based on that information, your program can determine which device to open.

Once you have identified the Signal Generators you want to send commands to, call

fmnLMS InitDevice(DEVID devicelD) to actually open the device and get its various parameters
like frequency setting, frequency sweep parameters, etc. After the fnLMS _InitDevice function
has been completed you can use any of the get functions to read the settings of the Signal
Generators.

To change one of the settings of the Signal Generators, use the corresponding set function. For
example, to set the Signal Generators frequency, call fnLMS_SetFrequencyEx(DEVID devicelD,
unsigned int frequency). The first argument is the device id of the Signal Generator, the second is
the desired output frequency. Frequency is specified in 10 Hz increments, where:

frequency = Frequency (Hz) / 10
For example, to specify an output frequency of 5.5 GHz, frequency = 550000000.

To set the output power level, call fnLMS_SetPowerLevel(DEVID devicelD, int powerlevel)
with the output power level you want. The power level is encoded as the number of .25dB
increments, with a resolution of .5dB. To set a power level of +5 dBm, for example, powerlevel
would be 20. To set a power level of -20 dBm, powerlevel would be -80.

Note that the Lab Brick Signal Generators have a maximum and minimum settable power level.
You can query the limits with calls to fnLMS GetMaxPwr(DEVID devicelD) and

ftnLMS GetMinPwr(DEVID devicelD). Both functions use the same encoding of the powerlevel
as the SetPowerLevel function.

When you are done with the device, call fnLMS CloseDevice(DEVID devicelD).

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |5

4.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get
functions normally return an integer value, but in the event of an error they will return an error
code. The error codes can be distinguished from normal data by their numeric value, since all
error codes have their high bit set, and they are outside of the range of normal data.

Functions that return a floating point result use specific, negative numeric values to indicate if an
error occurred.

A separate function, fnLMS_GetDeviceStatus(DEVID devicelD) provides access to a set of
status bits describing the operating state of the Signal Generators. This function can be used to
check if a device is currently connected or open.

The values of the status codes are defined in the Imsdrvr.h header file.

4.3 Functions — Setting up the environment & housekeeping
void fnLMS _Init(void)

Must be called once at the beginning of the user program to clear out the SDK’s data structures
and initialize the USB library functions.

char* fnLMS perror(LVSTATUS status)

Useful for debugging your user program, fnLMS _perror() takes a returned LVSTATUS value
from another function and returns a pointer to a descriptive string you can display on screen or
log.

char* fnLMS pFloatError(float status)

Useful for debugging your user program, fnLMS pFloatError() takes a returned status value
from another function and returns a pointer to a descriptive string you can display on screen or
log for functions that return a floating point value.

char* fnLMS_GetLibVersion(void)

Returns a string which contains the version number of the SDK. If possible, call this function
once when your program starts so you know the version number — that way, if you have
questions or problems, you can include this version information in your question to us.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |6

4.4 Functions — Selecting the Device
void fnLMS_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not communicate
with the actual hardware but simulates the basic operation of the dll functions. It does not
simulate the operation of frequency sweeps generated by the actual hardware, but it does
simulate the behavior of the functions used to set the parameters for sweeps.

int fnLMS_GetNumDevices()

This function returns a count of the number of connected Signal Generators.

int fnLMS_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected Signal
Generators. Note that the array must be large enough to hold a device id for the number of
devices returned by fnLMS_GetNumDevices. The function also returns the number of active
devices, which can, under some circumstances, be less than the number of devices returned in the
previous call to fnLMS_GetNumDevices.

The device ids are used to identify each device and are used in the rest of the functions to select
the device. Note that while the device ids may be small integers, and may, in some circumstances

appear to be numerically related to the devices present, they should only be used as opaque
handles.

int fnLMS_GetModelName(DEVID devicelD, char *ModelName)

This function is used to get the model name of the Signal Generators for ASCII clients. If the
function is called with a null pointer, it returns just the length of the model name string. If the
function is called with a non-null string pointer it copies the model name into the string and
returns the length of the string. The string length will never be greater than the constant

MAX MODELNAME which is defined in Imsdrvr.h. This function can be used regardless of
whether or not the Signal Generator has been initialized with the fnLMS _InitDevice function.

int fnLMS_GetSerialNumber(DEVID devicelD)

This function is used to get the serial number of the Signal Generators. It can be called regardless
of whether or not the Signal Generators has been initialized with the fnLMS_InitDevice function.
If your system has multiple Signal Generators, your software should use each device’s serial
number to keep track of each specific device. Do not rely upon the order in which the devices
appear in the table of active devices. On a typical system the individual Signal Generators will
typically be found in the same order, but there is no guarantee that this will occur.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |7

int fnLMS_GetDeviceStatus(DEVID devicelD)

This function can be used to obtain information about the status of a device, even before the
device is initialized. (Note that information on the sweep activity of the device is not guaranteed
to be available before the device is initialized.)

int fnLMS_InitDevice(DEVID devicelD)

This function is used to open the device interface to the Signal Generators and initialize the dll’s
copy of the device’s settings. If the fnLMS InitDevice function succeeds, then you can use the
various fnLMS Get* functions to read the Signal Generators ’s settings. This function will fail
and return an error code if the Signal Generators has already been opened by another program.

int fnLMS_CloseDevice(DEVID devicelD)

This function closes the device interface to the Signal Generators. It should be called when your
program is done using the Signal Generators.

4.5 Functions — Setting parameters
LVSTATUS faLMS_SetFrequencyEx(DEVID devicelD, unsigned int frequency)

This function is used to set the output frequency of the Signal Generators. Frequency is encoded
as an unsigned integer number of 10 Hz steps:

frequency = Frequency (Hz) / 10

For example, to specify an output frequency of 6 GHz, frequency = 6000000. The value of
frequency must be within the range of the attached Signal Generators, or an error will be
returned.

LVSTATUS tnLMS_SetPowerLevel(DEVID devicelD, int powerlevel);

This function is used to set the output power level of the programmable Signal Generators. The
power level is specified in .25dB units. The encoding is: powerlevel = desired output power in
dBm /.25dB

For example, if you want -7.5 dBm output power then you should set powerlevel to -30.

LVSTATUS taLMS_SetStartFrequencyEx(DEVID devicelD, unsigned int startfrequency)

This function sets the frequency at the beginning of a frequency sweep. The encoding of
startfrequency is the same as the fnLMS_SetFrequencyEx function. Note that the start frequency
should be less than the end frequency when you want the frequency to step upwards during the
sweep. For a sweep where the frequency decreases, then the start frequency should be larger than
the end frequency.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |8

LVSTATUS tnLMS_SetEndFrequencyEx(DEVID devicelD, unsigned int endfrequency)

This function sets the frequency at the end of a frequency sweep. The encoding of endfrequency
is the same as the fnLMS_SetFrequencyEx function.

LVSTATUS taLMS_SetSweepTime(DEVID devicelD, int sweeptime)

This function sets the time duration of the frequency sweep. The sweeptime variable is encoded
as a number of milliseconds. The minimum sweep time is 1 millisecond.

LVSTATUS taLMS_SetFrequencystepEx(DEVID devicelD, unsigned int freqstep)

This function is used to set the frequency step size of the frequency sweep. The encoding of
fregstep is the same as the fnLMS_SetFrequencyEx function.

LVSTATUS tahLMS_SetDwellTime(DEVID devicelD, int dwelltime)

This function is used to set the dwell time of the frequency sweep. The dwell time variable is
encoded as a number of milliseconds. The minimum dwell time is 10 ms.

LVSTATUS tfahLMS_SetldleTime(DEVID devicelD, int dwelltime)

This function is used to set the idle time of the frequency sweep. The idle time variable is
encoded as a number of milliseconds. The minimum idle time is 0 ms.

LVSTATUS thLMS_SetRFOn(DEVID devicelD, bool on)
This function turns the RF stages of the Signal Generators on (on = TRUE) or off (on = FALSE).

LVSTATUS taLMS_SetUselnternalRef(DEVID devicelD, bool internal);

This function configures the Signal Generators to use the internal reference if internal = 1. If
internal = 0, then the Signal Generators is configured to use an external frequency reference.

LVSTATUS taLMS_SetSweepDirection(DEVID devicelD, bool up)

This function is used to set the direction of the frequency sweep. To create a sweep with
increasing frequency, set up = TRUE. Note that the sweep start frequency value must be less
than the sweep end frequency value for a sweep with increasing frequency. For a sweep that
decreases in frequency, the sweep start value must be greater than the sweep end value.

LVSTATUS taLMS_SetSweepMode(DEVID devicelD, bool mode)

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |9

This function is used to select either a single frequency sweep, or a repeating series of sweeps. If
mode = TRUE then the sweep will be repeated, if mode = FALSE the sweep will only happen
once.

LVSTATUS tnLMS_SetSweepType(DEVID devicelD, bool swptype)

This function is used to select between a single directional frequency sweep, or a sweep which
returns to its original frequency after each sweep. If swptype = TRUE then the sweep will be
bidirectional, if swtype = FALSE the sweep will only go in one direction. For a bi-directional
sweep a graph of frequency vs. time for a repeating sweep will appear like a triangle wave, for a
non-bidirectional sweep, the graph of frequency vs. time will appear like a sawtooth wave.

LVSTATUS taLMS_StartSweep(DEVID devicelD, bool go)

This function is used to start and stop the frequency sweeps. If go = TRUE the Signal Generators
will begin sweeping, FALSE stops the sweep. You must set the sweep parameters before calling
this function to start the sweep.

LVSTATUS taLMS_SetFastPulsedOutput(DEVID devicelD, float pulseontime, float
pulsereptime, bool on)

This function is the preferred way to control the internal pulse modulation option. The
pulseontime parameter is the length of the pulse on time in seconds. The pulsereptime parameter
is the length of the repetition period in seconds. Both values can range from 100 nanoseconds
(0.100e-6) to 1000 seconds (1.0e3). Set on = TRUE to start the pulsed output modulation.

LVSTATUS taLMS_SetPulseOnTime(DEVID devicelD, float pulseontime)

This function is used to set the length of the RF pulse on time of the device’s internal modulation
for devices that support pulsed output modulation. The pulseontime parameter is the length of
the pulse on time in seconds, with a 100-nanosecond minimum. This function is not
recommended for general use. Instead use the fnLMS_SetFastPulsedOutput function.

LVSTATUS thnLMS_SetPulseOffTime(DEVID devicelD, float pulseofftime)

This function is used to set the length of the RF pulse off time of the device’s internal
modulation. The pulseofftime parameter is the length of the pulse off time in seconds, with a
100-nanosecond minimum. The repetition period of the pulse modulation is equal to pulseontime
+ pulseofftime. This function is not recommended for general use. Instead use the
fnLMS_SetFastPulsedOutput function.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |10

LVSTATUS fnLMS_EnablelnternalPulseMod(DEVID devicelD, bool on)

This function is used to turn on and off the internal output modulation. If on = TRUE the Signal
Generators will pulse its RF output on and off according to the values set for the pulse on time
and pulse off time using either the fnLMS_SetFastPulsedOutput function or the functions to set
pulse on and off time directly. To stop the internal pulse modulation, set on = FALSE. Always
disable internal pulse modulation before setting the pulse on and off time using the

fmnLMS_ SetPulseOnTime and fnLMS_SetPulseOffTime functions.

LVSTATUS tnLMS_SetUseExternalPulseMod(DEVID devicelD, bool external)

This function configures the Signal Generators to use the external pulse modulation input signal
if external = TRUE. If external = FALSE, then the Signal Generators is configured to use the
internal pulse modulation. Not all hardware configurations support an external pulse modulation
input. Both the internal and external pulse modulation can operate at the same time, allowing
more complex modulation patterns.

LVSTATUS faLMS_SetChirpMode(DEVID devicelD, bool mode)

This function enables chirp generation if mode is TRUE, and disables chirp generation if mode is
FALSE. The StartSweep function is used to start the generation of a chirp or a repeated set of
chirps.

The function fnLMS_SetUseExternalSweepTrigger(DEVID devicelD, bool external) can be
used to select the external trigger input as the source of triggers to start the chirps.

LVSTATUS fnLMS_SetChirpLength(DEVID devicelD, float chirplength)

This function sets the length of the chirp, with a minimum of 1 microsecond (1.0e-6), and a
maximum of 50 milliseconds (50.0e-3).

LVSTATUS fnLMS_SetChirpRepeatRate(DEVID devicelD, float chirp_repeat)

This function sets the repeat rate of repeating chirps. The parameter is the time between chirp
triggers, with a minimum of 10 microseconds (10.0e-6).

LVSTATUS faLMS_SetSequenceElement(DEVID devicelD, int index, unsigned int frequency,
int powerlevel, bool pwr_control)

This function is used to set an element in the sequence. The index runs from 0 to 49, frequency is
an unsigned integer in 10Hz units, powerlevel is in 0.25 db units, and the pwr_control flag is true
when the sequence element controls both frequency and power level. If the pwr_control flag is
false then only the frequency is controlled.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |11

LVSTATUS taLMS_SetSequenceStart(DEVID devicelD, int start)

This function is used to set the starting element of the sequence. The index runs from 0 to 49,
and start is zero based.

LVSTATUS taLMS_SetSequenceCount(DEVID devicelD, int count)

This function is used to set the length of the sequence. The length of the sequence can be set to
an integer number of elements from 0 to 50.

LVSTATUS tahLMS_SetSequenceDwellTime(DEVID devicelD, int dwelltime)

This function is used to set the dwell time in milliseconds for each element of the sequence. The
minimum dwell time for sequence elements is 10 ms.

LVSTATUS tahLMS_SetSequenceldleTime(DEVID devicelD, int idletime)

This function is used to set the idle time in milliseconds for the sequence. The minimum idle
time for sequences is 0 ms.

LVSTATUS fnLMS_StartSequence(DEVID devicelD, int control)

This function is used to control the operation of sequences. StartSequence takes one of five
control values defined in Imsdrvr.h: STOP_SEQUENCE to stop the sequence,

START SEQUENCE to play the sequence once, REPEAT SEQUENCE to start a repeating
sequence, PAUSE SEQUENCE to pause the sequence, and RESUME SEQUENCE to resume
the sequence.

LVSTATUS faLMS_SaveSettings(DEVID devicelD)

The Lab Brick Signal Generators can save their settings and then resume operating with the
saved settings when they are powered up. Set the desired parameters, then use this function to
save the settings.

4.6 Functions — Reading parameters
unsigned int fnLMS_GetFrequencyEx(DEVID devicelD)

This function returns the current frequency setting of the selected device. When a sweep is active
this value will change dynamically to reflect the current setting of the device. The return value is
frequency as an unsigned integer in 10 Hz units.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |12

unsigned int tnLMS_ GetStartFrequencyEx(DEVID devicelD)

This function returns the current frequency sweep starting value setting of the selected device.
The return value is frequency as an unsigned integer in 10 Hz units.

unsigned int tnLMS GetEndFrequencyEx(DEVID devicelD)

This function returns the current frequency sweep end setting of the selected device. The return
value is frequency as an unsigned integer in 10 Hz units.

unsigned int fnLMS_GetFrequencystepEx(DEVID devicelD, unsigned int fregstep)

This function is used to get the frequency step size of the frequency sweep. The return value is
frequency step as an unsigned integer in 10 Hz units.

int fnLMS_GetSweepTime(DEVID devicelD)

This function returns the current frequency sweep time in milliseconds. A one second sweep
time, for example, would be returned as 1000.

int fnLMS_GetSweepmode(DEVID devicelD)

This function returns the sweep mode from the Signal Generator as an integer. This returns the
value 2 when the sweep is in repeat sweep mode, and 1 when the sweep is in single sweep mode.

int fnLMS_GetSweepbidirectionalmode(DEVID devicelD)

This function returns an integer value which is 1 when bidirectional sweep mode is enabled for
the Signal Generator, or 0 when bidirectional sweep mode is disabled.

int fnLMS_GetDwellTime(DEVID devicelD)

This function returns the dwell time for sweep steps in milliseconds. A one second dwell time,
for example, would be returned as 1000.

int fnLMS_GetldleTime(DEVID devicelD)

This function returns the dwell time for sweep steps in milliseconds. A one second dwell time,
for example, would be returned as 1000.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |13

int fnLMS_GetPulseOnTime(DEVID devicelD)

This function returns the pulse on time, which is the length of time that RF output is enabled
when internal pulse modulation is operating, in seconds.

int tnLMS_GetPulseOffTime(DEVID devicelD)

This function returns the pulse off time, which is the length of time that RF output is disabled
when internal pulse modulation is operating, in seconds. The pulse repetition period is equal to
the pulse on time added to the pulse off time.

int fnLMS_GetPulseMode(DEVID devicelD)

This function returns an integer value which is 1 when the Signal Generators internal pulse
modulation is active, or 0 when the internal pulse modulation is off.

int fnLMS_GetUselnternalPulseMod(DEVID devicelD)

This function returns an integer value which is 1 when the Signal Generators is configured to use
its internal pulse modulation, or 0 when the external pulse modulation input is selected to control
the output.

int fnLMS_GetHasFastPulseMode(DEVID devicelD)

This function returns an integer value which is 1 when the Signal Generators has the internal
pulse modulation option, or 0 when the option is not installed.

int fnLMS_GetRF_On(DEVID devicelD)

This function returns an integer value which is 1 when the Signal Generators is “on”, or 0 when
the Signal Generators has been set “off” by the fnLMS_SetRFOn function.

int fnLMS_GetUselnternalRef(DEVID devicelD)

This function returns an integer value which is 1 when the Signal Generators is configured to use
its internal frequency reference. It returns a value of 0 when the Signal Generators is configured
to use an external frequency reference.

int tnLMS_GetUseExtSweepTrigger(DEVID devicelD)

This function returns an integer value which is 1 when the external sweep trigger is enabled for
the Signal Generator. It returns a value of 0 when the external sweep trigger is disabled for the
signal generator.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |14

int fiLMS_GetPLLLock(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generator is phase locked to
the reference, 0 when it is not phase locked to the reference.

int fnLMS_GetPowerLevel(DEVID devicelD)

This function returns the current power level setting as an integer number of .25 dB units. As an
example, an output power level of +3 dBm would result in the value 12 being returned, while an
output power level of +3.5 dBm would result in the value 14 being returned. The output power
resolution is .5 dB.

int fnLMS_GetMaxPwr(DEVID devicelD)

This function returns the maximum output power level that the Signal Generators can provide,
encoded in the same format as the fnLMS_GetPowerLevel function. For Signal Generators with
+10 dBm maximum output power level this function returns the integer value 40. This is a read
only value.

int fnLMS_GetMinPwr(DEVID devicelD)

This function returns the minimum output power level that the Signal Generators can provide,
encoded in the same format as the fnLMS_GetPowerLevel function. Typically, this value is a
negative number. For example, a device with -45 dBm minimum output power would return an
integer value of -180. This is a read only value.

unsigned int fnLMS _GetMaxFreqEx(DEVID devicelD)

This function returns the maximum output frequency that the device can provide. The value is
represented as an unsigned integer in 10 Hz units.

unsigned int fnLMS_GetMinFreqEx(DEVID devicelD)

This function returns the minimum output frequency that the device can provide. The value is
represented as an unsigned integer in 10 Hz units.

int fnLMS_GetHasChirpMode(DEVID devicelD)

This function returns and integer value which is 1 if the Signal Generator supports chirp
generation, 0 otherwise

float fnLMS_GetChirpLength(DEVID devicelD)
This function gets the length of the chirp in seconds.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

Page |15

float fnLMS GetChirpRepeatRate(DEVID devicelD)

This function gets the repeat rate in seconds of repeating chirps.

unsigned int fnLMS_GetSeqElementFrequency(DEVID devicelD, int index)

This function is used to get the frequency value for an element in the sequence. The index runs
from 0 to 49, and the frequency is returned as an unsigned integer in 10Hz units.

int fnLMS_GetSeqElementPower(DEVID devicelD, int index)

This function is used to get the power value for element in the sequence. The index runs from 0
to 49, and the power level value is returned as an integer in 0.25 db units.

int fnLMS_ GetSeqElementPwrControl(DEVID devicelD, int index)

This function is used to get the power control value for element in the sequence. The index runs
from 0 to 49, and the pwr_control flag is returned as an integer and is 1 when the sequence
element controls both frequency and power level. If the pwr_control flag is O then only the
frequency is controlled.

int fnLMS_GetSequenceStart(DEVID devicelD)

This function is used to get the starting element of the sequence. The returned index runs from 0
to 49 and is zero based.

int fnLMS_GetSequenceCount(DEVID devicelD)

This function is used to get the length of the sequence. The length of the sequence is returned as
an integer number of elements from 0 to 50.

int fnLMS_GetSequenceDwellTime(DEVID devicelD)

This function is used to get the dwell time in milliseconds for each element of the sequence.

int fnLMS_GetSequenceldleTime(DEVID devicelD)

This function is used to get the idle time in milliseconds for each element of the sequence.

Vaunix Technology Corporation

] www.Vaunix.com
a rl c +1(978) 662-7839

vaunixsales@vaunix.com

http://www.vaunix.com/

