
[Type here] [Type here] [Type here]

VAUNIX TECHNOLOGY CORPORATION

Lab Brick® BLX Series Signal Generators

Windows Ethernet API User Manual

Revision B

8/19/2025

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and customers as a guide for the

customized programming of Lab Brick products. The drawings, specifications, and information contained

herein are the property of Vaunix Technology Corporation, and any unauthorized use or disclosure of

these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used

in whole or in part as the basis for manufacture or sale of the equipment or software programs without the

prior written consent of Vaunix Technology Corporation.

P a g e | 1

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

Table of Contents

1. Overview ... 2

2. Using the SDK .. 2

3. Programming ... 3

3.1 Overall Strategy and API Architecture .. 3

3.2 Status Codes .. 4

3.3 Functions – Setting up the environment & housekeeping ... 5

3.4 Functions – Selecting the Device .. 5

3.5 Functions – Setting parameters .. 7

3.6 Functions – Reading parameters .. 11

http://www.vaunix.com/

P a g e | 2

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

1. Overview

The Lab Brick LMS Series Signal Generators SDK for Windows supports developers who want

to control Lab Brick LMS Series Signal Generators through the Ethernet port from Windows

programs, or who want to control the RF Switch from LabVIEW or other National Instruments

programming environments. The SDK includes a dll which provides a Win32/Win64 API to

find, initialize, and control the Signal Generators along with header files and an example

Win32/Wind64 C program which demonstrates the use of the API.

2. Using the SDK

The SDK consists of both 32- and 64-bit dlls, along with this documentation, a C style header

file, a library file for linking to the dll, and an example program. Unzip the SDK into a

convenient place on your hard disk and then copy the dll and library file into the directory of the

executable program you are creating. Add the header file (blxdrvr.h) to your project and include

it with the other header files in your program. Make sure that the linker directives include the

path of the library file.

http://www.vaunix.com/

P a g e | 3

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

3. Programming

3.1 Overall Strategy and API Architecture

The API provides functions for identifying how many and what type of Lab Brick LMS Signal

Generators are connected to the system, initializing Signal Generators so that you can send

them commands and read their state, functions to control the operation of the Signal Generators ,

and finally a function to close the software connection to the Signal Generators when you no

longer need to communicate with it.

The API can be operated in test mode, where the functions will simulate normal operation but

will not actually communicate with the hardware devices. This feature is provided as a

convenience to software developers who may not have a Lab Brick Signal Generators with them

but still want to be able to work on an applications program that uses the Lab Brick. Of course, it

is important to make sure that the API is in its normal mode to access the actual hardware!

Be sure to call fnLMS_SetTestMode(FALSE), unless of course you want the API to operate in

its test mode. In test mode there will be 2 devices, an BLX-403 and a BLX-403-20.

For each BLX device you intend to use, call fnLMS_AddLMSDevice(char* deviceIP) with an

IPV4 address in the form “192.168.1.21”. You can add up to 64 devices. A call to

fnLMS_RemoveLMSDevice(char* deviceIP) with its IPV4 address will remove the device from

the list of available BLX devices.

The first step is to identify the Signal Generators connected to the system. Call the function

fnLMS_GetNumDevices() to get the number of Signal Generators attached to the system and

establish connections to added signal generators to validate that they are BLX devices. Note that

USB devices can be attached and detached by users at any time. If you are writing a program

which needs to handle the situation where devices are attached or detached while the program is

operating, you should periodically call fnLMS_GetNumDevices() to see if any new devices have

been attached.

Allocate an array big enough to hold the device ids for the number of devices present. While you

should use the DEVID type declared in blxdrvr.h it’s just an array of units at this point. You may

want to allocate an array large enough to hold MAXDEVICES device ids, so that you do not

have to handle the case where the number of attached devices increases.

Call fnLMS_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device

ids for each connected Signal Generator. The function returns an integer, which is the number of

devices present on the machine.

The next step is to call fnLMS_GetModelNameA(DEVID deviceID, char *ModelName) with a

null ModelName pointer to get the length of the model name, or just use a buffer that can hold

MAX_MODELNAME chars. You can use the model name to identify the type of Signal

Generators. Call fnLMS_GetSerialNumber(DEVID deviceID) to get the serial number of the

Signal Generators. Based on that information, your program can determine which device to open.

Once you have identified the Signal Generators you want to send commands to, call

fnLMS_InitDevice(DEVID deviceID) to actually open the device and get its various parameters

like frequency setting, frequency sweep parameters, etc. After the fnLMS_InitDevice function

http://www.vaunix.com/

P a g e | 4

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

has been completed you can use any of the get functions to read the settings of the Signal

Generators.

To change one of the settings of the Signal Generators, use the corresponding set function. For

example, to set the Signal Generators frequency, call fnLMS_SetFrequency(DEVID deviceID,

unsigned int frequency). The first argument is the device id of the Signal Generator, the second is

the desired output frequency. Frequency is specified in 10 Hz increments, where:

frequency = Frequency (Hz) / 10

For example, to specify an output frequency of 5.5 GHz, frequency = 550000000.

To set the output power level, call fnLMS_SetPowerLevel(DEVID deviceID, int powerlevel)

with the output power level you want. The power level is encoded as the number of .25dB

increments, with a resolution of .5dB. To set a power level of +5 dBm, for example, powerlevel

would be 20. To set a power level of -20 dBm, powerlevel would be -80.

Note that the Lab Brick Signal Generators have a maximum and minimum settable power level.

You can query the limits with calls to fnLMS_GetMaxPwr(DEVID deviceID) and

fnLMS_GetMinPwr(DEVID deviceID). Both functions use the same encoding of the powerlevel

as the SetPowerLevel function.

When you are done with the device, call fnLMS_CloseDevice(DEVID deviceID).

3.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get

functions normally return an integer value, but in the event of an error they will return an error

code. The error codes can be distinguished from normal data by their numeric value, since all

error codes have their high bit set, and they are outside of the range of normal data.

Functions that return a floating point result use specific, negative numeric values to indicate if an

error occurred.

A separate function, fnLMS_GetDeviceStatus(DEVID deviceID) provides access to a set of

status bits describing the operating state of the Signal Generators. This function can be used to

check if a device is currently connected or open.

The values of the status codes are defined in the blxdrvr.h header file.

http://www.vaunix.com/

P a g e | 5

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

3.3 Functions – Setting up the environment & housekeeping

VNX_LMS_API int fnLMS_GetLibVersion(void)

Returns the version number of the SDK. If possible, call this function once when your program

starts so you know the version number – that way, if you have questions or problems, you can

include this version information in your question to us.

VNX_LMS_API void fnLMS_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not communicate

with the actual hardware but simulates the basic operation of the dll functions. It does not

simulate the operation of frequency sweeps generated by the actual hardware, but it does

simulate the behavior of the functions used to set the parameters for sweeps.

VNX_LMS_API LVSTATUS fnLMS_GetIPMode(DEVID deviceID, int* respdata);

This function retrieves the IP mode of the synthesizer and stores it in respdata. 0 = Static, 1 =

DHCP.

VNX_LMS_API LVSTATUS fnLMS_GetIPAddress(DEVID deviceID, char* respdata);

Gets the device’s IP address string and stores it in respdata.

VNX_LMS_API LVSTATUS fnLMS_GetNetmask(DEVID deviceID, char* respdata);

Gets the device’s subnet mask string and stores it in respdata.

VNX_LMS_API LVSTATUS fnLMS_GetGateway(DEVID deviceID, char* respdata);

Gets the device’s gateway address string and stores it in respdata.

3.4 Functions – Selecting the Device

VNX_LMS_API int fnLMS_AddLMSDevice(char* deviceIP)

This function adds a device to the list of available devices. For each device you intend to use,

call this function with an IPV4 address in the form “192.168.1.21”. You can add up to 64

devices..

VNX_LMS_API int fnLMS_RemoveLMSDevice(char* deviceIP)

This function removes a device from the list of available devices. To remove a device, call this

function with an IPV4 address in the form “192.168.1.21”.

http://www.vaunix.com/

P a g e | 6

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API int fnLMS_GetNumDevices()

This function returns a count of the number of connected Signal Generators.

VNX_LMS_API int fnLMS_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected Signal

Generators. Note that the array must be large enough to hold a device id for the number of

devices returned by fnLMS_GetNumDevices. The function also returns the number of active

devices, which can, under some circumstances, be less than the number of devices returned in the

previous call to fnLMS_GetNumDevices.

The device ids are used to identify each device and are used in the rest of the functions to select

the device. Note that while the device ids may be small integers, and may, in some circumstances

appear to be numerically related to the devices present, they should only be used as opaque

handles.

VNX_LMS_API int fnLMS_GetModelNameA(DEVID deviceID, char *ModelName)

This new function is used to get the model name of the synthesizer as an ASCII string. If the

function is called with a null pointer, it returns just the length of the model name string. If the

function is called with a non-null string pointer it copies the model name into the string and

returns the length of the string. The string length will never be greater than the constant

MAX_MODELNAME which is defined in vnx_LMS_api.h This function can be used regardless

of whether or not the synthesizer has been initialized with the fnLMS_InitDevice function.

VNX_LMS_API int fnLMS_GetModelNameW(DEVID deviceID, wchar_t *ModelName)

This new function is used to get the model name of the synthesizer as a Unicode string. If the

function is called with a null pointer, it returns just the length of the model name string. If the

function is called with a non-null string pointer it copies the model name into the string and

returns the length of the string. The string length will never be greater than the constant

MAX_MODELNAME which is defined in vnx_LMS_api.h This function can be used regardless

of whether or not the synthesizer has been initialized with the fnLMS_InitDevice function.

VNX_LMS_API int fnLMS_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the Signal Generators. It can be called regardless

of whether or not the Signal Generators has been initialized with the fnLMS_InitDevice function.

If your system has multiple Signal Generators, your software should use each device’s serial

number to keep track of each specific device. Do not rely upon the order in which the devices

appear in the table of active devices. On a typical system the individual Signal Generators will

typically be found in the same order, but there is no guarantee that this will occur.

http://www.vaunix.com/

P a g e | 7

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API int fnLMS_GetDeviceStatus(DEVID deviceID)

This function can be used to obtain information about the status of a device, even before the

device is initialized. (Note that information on the sweep activity of the device is not guaranteed

to be available before the device is initialized.)

VNX_LMS_API int fnLMS_InitDevice(DEVID deviceID)

This function is used to open the device interface to the Signal Generators and initialize the dll’s

copy of the device’s settings. If the fnLMS_InitDevice function succeeds, then you can use the

various fnLMS_Get* functions to read the Signal Generators ’s settings. This function will fail

and return an error code if the Signal Generators has already been opened by another program.

VNX_LMS_API int fnLMS_CloseDevice(DEVID deviceID)

This function closes the device interface to the Signal Generators. It should be called when your

program is done using the Signal Generators.

3.5 Functions – Setting parameters

VNX_LMS_API LVSTATUS fnLMS_SetFrequency(DEVID deviceID, unsigned int frequency)

This function is used to set the output frequency of the Signal Generators. Frequency is encoded

as an unsigned integer number of 10 Hz steps:

frequency = Frequency (Hz) / 10

For example, to specify an output frequency of 6 GHz, frequency = 6000000. The value of

frequency must be within the range of the attached Signal Generators, or an error will be

returned.

VNX_LMS_API LVSTATUS fnLMS_SetPowerLevel(DEVID deviceID, int powerlevel);

This function is used to set the output power level of the programmable Signal Generators. The

power level is specified in .25dB units. The encoding is: powerlevel = desired output power in

dBm / .25dB

For example, if you want -7.5 dBm output power then you should set powerlevel to -30.

http://www.vaunix.com/

P a g e | 8

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API LVSTATUS fnLMS_SetStartFrequency(DEVID deviceID, unsigned int

startfrequency)

This function sets the frequency at the beginning of a frequency sweep. The encoding of

startfrequency is the same as the fnLMS_SetFrequency function. Note that the start frequency

should be less than the end frequency when you want the frequency to step upwards during the

sweep. For a sweep where the frequency decreases, then the start frequency should be larger than

the end frequency.

VNX_LMS_API LVSTATUS fnLMS_SetEndFrequency(DEVID deviceID, unsigned int

endfrequency)

This function sets the frequency at the end of a frequency sweep. The encoding of endfrequency

is the same as the fnLMS_SetFrequency function.

VNX_LMS_API LVSTATUS fnLMS_SetFrequencyStep(DEVID deviceID, unsigned int

freqstep)

This function is used to set the frequency step size of the frequency sweep. The encoding of

freqstep is the same as the fnLMS_SetFrequency function.

VNX_LMS_API LVSTATUS fnLMS_SetDwellTime(DEVID deviceID, int dwelltime)

This function is used to set the dwell time of the frequency sweep. The dwell time variable is

encoded as a number of milliseconds. The minimum dwell time is 10 ms.

VNX_LMS_API LVSTATUS fnLMS_SetIdleTime(DEVID deviceID, int dwelltime)

This function is used to set the idle time of the frequency sweep. The idle time variable is

encoded as a number of milliseconds. The minimum idle time is 0 ms.

VNX_LMS_API LVSTATUS fnLMS_SetRFOn(DEVID deviceID, bool on)

This function turns the RF stages of the Signal Generators on (on = TRUE) or off (on = FALSE).

VNX_LMS_API LVSTATUS fnLMS_SetUseInternalRef(DEVID deviceID, bool internal);

This function configures the Signal Generators to use the internal reference if internal = 1. If

internal = 0, then the Signal Generators is configured to use an external frequency reference.

http://www.vaunix.com/

P a g e | 9

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API LVSTATUS fnLMS_SetSweepDirection(DEVID deviceID, bool up)

This function is used to set the direction of the frequency sweep. To create a sweep with

increasing frequency, set up = TRUE. Note that the sweep start frequency value must be less

than the sweep end frequency value for a sweep with increasing frequency. For a sweep that

decreases in frequency, the sweep start value must be greater than the sweep end value.

VNX_LMS_API LVSTATUS fnLMS_SetSweepMode(DEVID deviceID, bool mode)

This function is used to select either a single frequency sweep, or a repeating series of sweeps. If

mode = TRUE then the sweep will be repeated, if mode = FALSE the sweep will only happen

once.

VNX_LMS_API LVSTATUS fnLMS_SetSweepType(DEVID deviceID, bool swptype)

This function is used to select between a single directional frequency sweep, or a sweep which

returns to its original frequency after each sweep. If swptype = TRUE then the sweep will be

bidirectional, if swtype = FALSE the sweep will only go in one direction. For a bi-directional

sweep a graph of frequency vs. time for a repeating sweep will appear like a triangle wave, for a

non-bidirectional sweep, the graph of frequency vs. time will appear like a sawtooth wave.

VNX_LMS_API VNX_LMS_API LVSTATUS fnLMS_StartSweep(DEVID deviceID, bool go)

This function is used to start and stop the frequency sweeps. If go = TRUE the Signal Generators

will begin sweeping, FALSE stops the sweep. You must set the sweep parameters before calling

this function to start the sweep.

VNX_LMS_API LVSTATUS fnLMS_SetFastPulsedOutput(DEVID deviceID, float

pulseontime, float pulsereptime, bool on)

This function is the preferred way to control the internal pulse modulation option. The

pulseontime parameter is the length of the pulse on time in seconds. The pulsereptime parameter

is the length of the repetition period in seconds. Both values can range from 100 nanoseconds

(0.100e-6) to 1000 seconds (1.0e3). Set on = TRUE to start the pulsed output modulation.

VNX_LMS_API LVSTATUS fnLMS_SetPulseOnTime(DEVID deviceID, float pulseontime)

This function is used to set the length of the RF pulse on time of the device’s internal modulation

for devices that support pulsed output modulation. The pulseontime parameter is the length of

the pulse on time in seconds, with a 100-nanosecond minimum. This function is not

recommended for general use. Instead use the fnLMS_SetFastPulsedOutput function.

http://www.vaunix.com/

P a g e | 10

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API LVSTATUS fnLMS_SetPulseOffTime(DEVID deviceID, float pulseofftime)

This function is used to set the length of the RF pulse off time of the device’s internal

modulation. The pulseofftime parameter is the length of the pulse off time in seconds, with a

100-nanosecond minimum. The repetition period of the pulse modulation is equal to pulseontime

+ pulseofftime. This function is not recommended for general use. Instead use the

fnLMS_SetFastPulsedOutput function.

VNX_LMS_API LVSTATUS fnLMS_EnableInternalPulseMod(DEVID deviceID, bool on)

This function is used to turn on and off the internal output modulation. If on = TRUE the Signal

Generators will pulse its RF output on and off according to the values set for the pulse on time

and pulse off time using either the fnLMS_SetFastPulsedOutput function or the functions to set

pulse on and off time directly. To stop the internal pulse modulation, set on = FALSE. Always

disable internal pulse modulation before setting the pulse on and off time using the

fnLMS_SetPulseOnTime and fnLMS_SetPulseOffTime functions.

VNX_LMS_API LVSTATUS fnLMS_SetUseExternalPulseMod(DEVID deviceID, bool

external)

This function configures the Signal Generators to use the external pulse modulation input signal

if external = TRUE. If external = FALSE, then the Signal Generators is configured to use the

internal pulse modulation. Not all hardware configurations support an external pulse modulation

input. Both the internal and external pulse modulation can operate at the same time, allowing

more complex modulation patterns.

VNX_LMS_API LVSTATUS fnLMS_SetSequenceElement(DEVID deviceID, int index,

unsigned int frequency, int powerlevel, bool pwr_control)

This function is used to set an element in the sequence. The index runs from 0 to 49, frequency is

an unsigned integer in 10Hz units, powerlevel is in 0.25 db units, and the pwr_control flag is true

when the sequence element controls both frequency and power level. If the pwr_control flag is

false then only the frequency is controlled.

VNX_LMS_API LVSTATUS fnLMS_SetSequenceStart(DEVID deviceID, int start)

This function is used to set the starting element of the sequence. The index runs from 0 to 49,

and start is zero based.

http://www.vaunix.com/

P a g e | 11

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API LVSTATUS fnLMS_SetSequenceCount(DEVID deviceID, int count)

This function is used to set the length of the sequence. The length of the sequence can be set to

an integer number of elements from 0 to 50.

VNX_LMS_API LVSTATUS fnLMS_SetSequenceDwellTime(DEVID deviceID, int dwelltime)

This function is used to set the dwell time in milliseconds for each element of the sequence. The

minimum dwell time for sequence elements is 10 ms.

VNX_LMS_API LVSTATUS fnLMS_SetSequenceIdleTime(DEVID deviceID, int idletime)

This function is used to set the idle time in milliseconds for the sequence. The minimum idle

time for sequences is 0 ms.

VNX_LMS_API LVSTATUS fnLMS_StartSequence(DEVID deviceID, int control)

This function is used to control the operation of sequences. StartSequence takes one of five

control values defined in lmsdrvr.h: STOP_SEQUENCE to stop the sequence,

START_SEQUENCE to play the sequence once, REPEAT_SEQUENCE to start a repeating

sequence, PAUSE_SEQUENCE to pause the sequence, and RESUME_SEQUENCE to resume

the sequence.

VNX_LMS_API LVSTATUS fnLMS_SaveSettings(DEVID deviceID)

The Lab Brick Signal Generators can save their settings and then resume operating with the

saved settings when they are powered up. Set the desired parameters, then use this function to

save the settings.

3.6 Functions – Reading parameters

VNX_LMS_API unsigned int fnLMS_GetFrequency(DEVID deviceID)

This function returns the current frequency setting of the selected device. When a sweep is active

this value will change dynamically to reflect the current setting of the device. The return value is

frequency as an unsigned integer in 10 Hz units.

VNX_LMS_API unsigned int fnLMS_GetStartFrequency(DEVID deviceID)

This function returns the current frequency sweep starting value setting of the selected device.

The return value is frequency as an unsigned integer in 10 Hz units.

http://www.vaunix.com/

P a g e | 12

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API unsigned int fnLMS_GetEndFrequency(DEVID deviceID)

This function returns the current frequency sweep end setting of the selected device. The return

value is frequency as an unsigned integer in 10 Hz units.

VNX_LMS_API unsigned int fnLMS_GetFrequencyStep(DEVID deviceID, unsigned int

freqstep)

This function is used to get the frequency step size of the frequency sweep. The return value is

frequency step as an unsigned integer in 10 Hz units.

VNX_LMS_API int fnLMS_GetSweepmode(DEVID deviceID)

This function returns the sweep mode from the Signal Generator as an integer. This returns the

value 2 when the sweep is in repeat sweep mode, and 1 when the sweep is in single sweep mode.

VNX_LMS_API int fnLMS_GetSweepbidirectionalmode(DEVID deviceID)

This function returns an integer value which is 1 when bidirectional sweep mode is enabled for

the Signal Generator, or 0 when bidirectional sweep mode is disabled.

VNX_LMS_API int fnLMS_GetDwellTime(DEVID deviceID)

This function returns the dwell time for sweep steps in milliseconds. A one second dwell time,

for example, would be returned as 1000.

VNX_LMS_API int fnLMS_GetIdleTime(DEVID deviceID)

This function returns the dwell time for sweep steps in milliseconds. A one second dwell time,

for example, would be returned as 1000.

VNX_LMS_API int fnLMS_GetPulseOnTime(DEVID deviceID)

This function returns the pulse on time, which is the length of time that RF output is enabled

when internal pulse modulation is operating, in seconds.

VNX_LMS_API int fnLMS_GetPulseOffTime(DEVID deviceID)

This function returns the pulse off time, which is the length of time that RF output is disabled

when internal pulse modulation is operating, in seconds. The pulse repetition period is equal to

the pulse on time added to the pulse off time.

http://www.vaunix.com/

P a g e | 13

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API int fnLMS_GetPulseMode(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generators internal pulse

modulation is active, or 0 when the internal pulse modulation is off.

VNX_LMS_API int fnLMS_GetUseInternalPulseMod(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generators is configured to use

its internal pulse modulation, or 0 when the external pulse modulation input is selected to control

the output.

VNX_LMS_API int fnLMS_GetHasFastPulseMode(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generators has the internal

pulse modulation option, or 0 when the option is not installed.

VNX_LMS_API int fnLMS_GetRF_On(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generators is “on”, or 0 when

the Signal Generators has been set “off” by the fnLMS_SetRFOn function.

VNX_LMS_API int fnLMS_GetUseInternalRef(DEVID deviceID)

This function returns an integer value which is 1 when the Signal Generators is configured to use

its internal frequency reference. It returns a value of 0 when the Signal Generators is configured

to use an external frequency reference.

VNX_LMS_API int fnLMS_GetUseInternalSweepTrigger(DEVID deviceID)

This function returns an integer value which is 0 when the external sweep trigger is enabled for

the Signal Generator. It returns a value of 1 when the external sweep trigger is disabled for the

signal generator.

VNX_LMS_API int fnLMS_GetPowerLevel(DEVID deviceID)

This function returns the current power level setting as an integer number of .25 dB units relative

to the maximum power level. As an example, an output power level of +5 dBm for a device with

max power +10 would result in the value 20 being returned, while an output power level of +10

dBm would result in the value 0 being returned.

http://www.vaunix.com/

P a g e | 14

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API int fnLMS_GetAbsPowerLevel(DEVID deviceID)

This function returns the current absolute power level setting as an integer number of .25 dB

units. As an example, an output power level of +3 dBm would result in the value 12 being

returned, while an output power level of +3.5 dBm would result in the value 14 being returned.

VNX_LMS_API int fnLMS_GetMaxPwr(DEVID deviceID)

This function returns the maximum output power level that the Signal Generators can provide,

encoded in the same format as the fnLMS_GetPowerLevel function. For Signal Generators with

+10 dBm maximum output power level this function returns the integer value 40. This is a read

only value.

VNX_LMS_API int fnLMS_GetMinPwr(DEVID deviceID)

This function returns the minimum output power level that the Signal Generators can provide,

encoded in the same format as the fnLMS_GetPowerLevel function. Typically, this value is a

negative number. For example, a device with -45 dBm minimum output power would return an

integer value of -180. This is a read only value.

VNX_LMS_API unsigned int fnLMS_GetMaxFreq(DEVID deviceID)

This function returns the maximum output frequency that the device can provide. The value is

represented as an unsigned integer in 10 Hz units.

VNX_LMS_API unsigned int fnLMS_GetMinFreq(DEVID deviceID)

This function returns the minimum output frequency that the device can provide. The value is

represented as an unsigned integer in 10 Hz units.

VNX_LMS_API unsigned int fnLMS_GetSeqElementFrequency(DEVID deviceID, int index)

This function is used to get the frequency value for an element in the sequence. The index runs

from 0 to 49, and the frequency is returned as an unsigned integer in 10Hz units.

VNX_LMS_API int fnLMS_GetSeqElementPower(DEVID deviceID, int index)

This function is used to get the power value for element in the sequence. The index runs from 0

to 49, and the power level value is returned as an integer in 0.25 db units.

http://www.vaunix.com/

P a g e | 15

 Vaunix Technology Corporation
 www.Vaunix.com
 +1 (978) 662-7839
 vaunixsales@vaunix.com

VNX_LMS_API int fnLMS_GetSeqElementPwrControl(DEVID deviceID, int index)

This function is used to get the power control value for element in the sequence. The index runs

from 0 to 49, and the pwr_control flag is returned as an integer and is 1 when the sequence

element controls both frequency and power level. If the pwr_control flag is 0 then only the

frequency is controlled.

VNX_LMS_API int fnLMS_GetSequenceStart(DEVID deviceID)

This function is used to get the starting element of the sequence. The returned index runs from 0

to 49 and is zero based.

VNX_LMS_API int fnLMS_GetSequenceCount(DEVID deviceID)

This function is used to get the length of the sequence. The length of the sequence is returned as

an integer number of elements from 0 to 50.

VNX_LMS_API int fnLMS_GetSequenceDwellTime(DEVID deviceID)

This function is used to get the dwell time in milliseconds for each element of the sequence.

VNX_LMS_API int fnLMS_GetSequenceIdleTime(DEVID deviceID)

This function is used to get the idle time in milliseconds for each element of the sequence.

http://www.vaunix.com/

